首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The improved granular mixtures are widely used as the fillings of railway 8ubgrade, and in order to investigate the effect of coarse grain content on granular mixtures, a series of field tests were conducted. The experimental results indicate that the permeability coefficient increases significantly with the increment of granite gravel content, especially in the range of 60%-70%. Thcrc exists a coarse grain content limit defined as 53%-58.5% to reform the permeable granular skeleton. Beyond this limit, the permeable granular skeleton is efficiently formed, and the macro pores between the separate gravels are partially filled, which is the explanation lbr the permeability increase. The investigations indicate the subgrade resistance modulus (ks0, Ev2, and Evd) depends on the granite gravel content, and the resistance modulus increases significantly beyond granite gravel content of 50%. The skeletons of granitc gravel clayey sand mixture change in the long-term deformation objected to the train-induced dynamic load, which involves three main repeated and circular deformation stages. Generally, the long-time deformation is explained as the gravel crushing and filling the internal porous space with crushed gravel fragments. Through these investigations, the C40-G60 or C30-G70 is recommended as an optimum soil mixture for the good permeability and high resistance modulus.  相似文献   

2.
Hardness and microstructure evolutions in 1050 aluminum alloy prepared by equal-channel angular pressing (ECAP) were inves- tigated by hardness testing, optical microscopy, and transmission electron microscopy after samples were annealed at different temperatures for 1 h both in the absence and presence of a 12-T magnetic field. The results showed that the hardness of samples after magnetic annealing were lower than that of samples after normal annealing at 150-250℃, but it was higher than that of samples after normal annealing at 〉250℃. During annealing, the rate of softening was faster, and the grains were more homogeneous in 8-ECAPed samples than in 2-ECAPed samples. A rapid grain growth occurred when 2-ECAPed samples were annealed at high temperature (〉300℃). The magnetic field enhanced the mobility of dislocations and grain boundaries. A more homogeneous grain size was observed in samples prepared under an applied magnetic field.  相似文献   

3.
The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then grew in different directions through movement of grain boundaries into the ferrite phase. Subsequently, the adjacent austenite grains impinged against each other during the α→γtransformation. After the α→γ transformation, austenite grains coarsened via the coalescence of small grains and via boundary migration between grains. The growth process of austenite grains was a continuous process during heating, isothermal holding, and cooling in simulated thermal cycling. Abundant finely dispersed nanoscale TiN particles in a steel specimen containing 0.012wt% Ti effectively retarded the grain boundary migration, which resulted in refined austenite grains. When the Ti concentration in the steel was increased, the number of TiN particles de- creased and their size coarsened. The big particles were not effective in pinning the austenite grain boundary movement and resulted in coarse austenite grains.  相似文献   

4.
Coatings containing Fe-Si particles were electrodeposited on 3.0wt% Si steel sheets under magnetic fields. The effects of magnetic flux density (MFD), electrode arrangement and current density on the surface morphology, the silicon content in the coatings and the cathode current efficiency were investigated. When a magnetic field was applied parallel to the current and when the MFD was less than 0.5 T, numerous needle-like structures appeared on the coating surface. With increasing MFD, the needle-like structures weakened and were transformed into dome-shaped structures. Meanwhile, compared to results obtained in the absence of a magnetic field, the silicon content in the coatings significantly increased as the MFD was increased for all of the samples obtained using a vertical electrode system. However, in the case of an aclinic electrode system, the silicon content decreased. Furthermore, the cathode current efficiency was considerably diminished when a magnetic field was applied. A possible mechanism for these phenomena was discussed.  相似文献   

5.
Abstract: Two-tier heterogeneous networks (HetNets), where the current cellular networks, i.e., macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant benefits to spectral utilization and system capacity. The interference management and access control for open and closed femtocells in two-tier HetNets were focused. The contributions consist of two parts. Firstly, in order to reduce the uplink interference caused by MUEs (macrocell user equipments) at closed femtocells, an incentive mechanism to implement interference mitigation was proposed. It encourages femtoeells that work with closed-subscriber-group (CSG) to allow the interfering MUEs access in but only via uplink, which can reduce the interference significantly and also benefit the marco-tier. The interference issue was then studied in open-subscriber-group (OSG) femtocells from the perspective of handover and mobility prediction. Inbound handover provides an alternative solution for open femtocells when interference turns up, while this accompanies with PCI (physical cell identity) confusion during inbound handover. To reduce the PCI confusion, a dynamic PCI allocation scheme was proposed, by which the high handin femtocells have the dedicated PCI while the others share the reuse PCIs. A Markov chain based mobility prediction algorithm was designed to decide whether the femtoeell status is with high handover requests. Numerical analysis reveals that the UL interference is managed well for the CSG femtocell and the PCI confusion issue is mitigated greatly in OSG femtocell compared to the conventional approaches.  相似文献   

6.
Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.  相似文献   

7.
Specimens of Pb1-1.5xLax(Zr0.53 Ti0.47)1-y-zFeyNb2O3 (x = 0, 0.004, 0.008, 0.012, and 0.016, y = z = 0.01) (PZTFN) ceramics were synthesized by a semi-wet route. In the present study, the effect of La doping was investigated on the structural, microstructural, dielectric, piezoelectric, and ferroelectric properties of the ceramics. The results show that, the tetragonal (space group P4mm) and rhombohedral (space group R3c) phases are observed to coexist in the sample at x = 0.012. Microstructural investigations of all the samples reveal that La doping inhibits grain growth. Doping of La into PZTFN improves the dielectric, ferroelectric, and piezoelectric properties of the ceramics. The hys- teresis loops of all specimens exhibit nonlinear behavior. The dielectric, piezoelectric and ferroelectric properties show a maximum response atx 〉 0.012, which corresponds to the morphotropic phase boundary (MPB).  相似文献   

8.
In the modeling of microsegregation, the partition coefficient is usually calculated using data from the equilibrium phase diagrams. The aim of this study was to experimentally and theoretically analyze the partition coefficient in binary aluminum--copper alloys. The sam- ples were analyzed by differential thermal analysis (DTA), which were melted and quenched from different temperatures during solidifica- tion. The mass fraction and composition of phases were measured by image processing and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) unit. These data were used to calculate as the experimental partition coefficients with four different methods. The experimental and equilibrium partition coefficients were used to model the concentration profile in the primary phase. The modeling results show that the profiles calculated by the experimental partition coefficients are more consistent with the experi- mental profiles, compared to those calculated using the equilibrium partition coefficients.  相似文献   

9.
In order to improve the bonding strength between piston alloys and cast iron ring of aluminum piston with reinforced cast iron ring, the different methods of the surface treatments (shot blasting and sand blasting) to the cast iron ring are experimented. The optical micrograph shows that an intermetallic layer and a ligulate shaped structure are formed between piston alloys and cast iron base ring. After sand blasting treatment, the ring surface is non-metal shiny, matte-like and has no obvious pits. The intermetallic layer thickness formed between piston alloys and cast iron is thinner and more equally distributed after sand blasting to the ring. The content of the graphite distributed the interfacial zone after the shot blasting treatment is little. With the increase of time by sand blasting, the hardness starts to slightly descend. The bonding strength of the sample by sand blasting is obviously higher than that by shot blasting and increases from 9.32 MPa to 19.53 MPa.  相似文献   

10.
Basic dynamic characteristics and seismic design of anchorage system   总被引:1,自引:0,他引:1  
Based on some assumptions, the dynamic governing equation of anchorage system is established. The calculation formula of natural frequency and the corresponding vibration mode are deduced. Besides, the feasibility of the theoretical method is verified by using a specific example combined with other methods. It is found that the low-order natural frequency corresponds to the first mode of vibration, and the high-order natural frequency corresponds to the second mode of vibration, while the third mode happens only when the physical and mechanical parameters of anchorage system meet certain conditions. With the increasing of the order of natural frequency, the influence on the dynamic mechanical response of anchorage system decreases gradually. Additionally, a calculating method, which can find the dangerous area of anchorage engineering in different construction sites and avoid the unreasonable design of anchor that may cause resonance, is proposed to meet the seismic precautionary requirements. This method is verified to be feasible and effective by being applied to an actual project. The study of basic dynamic features of anchorage system can provide a theoretical guidance for anchor seismic design and fast evaluation of anchor design scheme.  相似文献   

11.
Ternary TiO2/WO3/graphene (TWG) nanocomposites were prepared by a facile salt-ultrasonic assisted hydrothermal method. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption--desorption. Both anatase TiO2 and orthorhombic WO3 formed in the nanocomposites, along with a highly disordered overlay of individual graphene nanosheets. Polyhedral and spherical TiO/and WO3 nanoparticles of uniform size 10-30 nm were densely anchored to the graphene sheets. The maximum specific surface area of the products was 144.59 m2·g^-1. The products showed clear abilities for the removal of Rhodamine B in the absence of illumination. Furthermore, the adsorption activity of the products exhibited only a slight decrease after three successive cycles. The results demonstrate that the ternary nanocomposites could be used as a high-efficiency adsorbent for the removal of environmental contaminants.  相似文献   

12.
Abstract: We performed fluidized bed coating ofAl-based nanoeomposite powder-binder suspensions onto polymer substrates. The effects of the type and amount of the binder and nanoparticle additive on the coating process efficiency and coating characteristics were investigated. The efficiency decreased from 52% to 49% as the processing time increased from 15 to 20 min. However, the amount and thickness of the coating also increased as the processing time and amount of the binder were increased. The addition of nanoparticles to the system decreased the thickness of the coating from 222 to 207 μm when polyvinyl alcohol (PVA) was used as a binder. The suspension containing 3wt% R-4410 binder exhibited the greatest efficiency of 60%.  相似文献   

13.
The adsorption heat and reaction rate constant of potassium dichromate on the surface of galena were studied. The results indicate that potassium dichromate tends to adsorption on the galena surface. The reaction order is only 0.08385, suggesting that the concentration of potassium dichromate has little influence on its adsorption on the galena surface. In addition, the simulation of CrO2 4- adsorption on the PbS (100) surface in the absence and presence of O2 was carried out by density functional theory (DFT). The calculated results show that CrO2 4- species adsorb energetically at the Pb-S bond site, and the presence of O2 can enhance this adsorption.  相似文献   

14.
A good understanding of pedestrian movement in the transfer corridor is vital for the planning and design of the station, especially for efficiency and safety.A multi-force vector grid model was presented to simulate the movement of bidirectional pedestrian flow based on cellular automata and forces between pedestrians. The model improves rule-based characteristics of cellular automata, details forces between pedestrians and solves pedestrian collisions by a several-step updating method to simulate pedestrian movements. Two general scenarios in corridor were simulated. One is bidirectional pedestrian flow simulation with isolation facility, and the other is bidirectional pedestrian flow simulation without isolation facility, where there exists disturbance in the middle. Through simulation, some facts can be seen that pedestrians in the case with isolation facility have the largest speed and pedestrians in the case without isolation facility have the smallest speed; pedestrians in the case of unidirectional flow have the largest volume and pedestrians in the case of without isolation facility have the smallest volume.  相似文献   

15.
The human plasma protein binding of water soluble flavonoids in the peels of five spices of citrus fruits was studied by ultrafiltration combined with HPLC.The flavonoids were extracted separately by hot and cold water,and higher total flavonoid contents were detected in the former extracts than the latter ones.All the extracts show significant scavenging abilities to both ABTS and DPPH free radicals,which indicates the health benefits of the water extracts of citrus fruits peels.For DPPH radical,the IC50values of hot extract follow as Navel orange(NO)≈Mandarin orange(MO) Lemon(LE) Lo tangerine(LO) Pomelo(PO),while the rank is NO POLE≈MOLO for ABTS radical.The HPLC results reveal that the kinds and contents of the flavonoids detected in the extracts are different among the species.MO extract has the most neohesperidin dihydrochalcone of 118.76 μmol/L and quercetrin of 211.81 μmol/L of which are much more than the rest extracts.Pomelo extract has the most plentiful flavonoids of naringin with a concentration of 303.28 μmol/L.The high contents of myricetrin and dihydromyricetin which both are potent free radical scavengers may explain the highest free radical scavenging activity of the NO extract.The plasma binding rates decrease with the increasing concentrations of flavonoids,and the flavonoids having plenty hydroxyl groups on both A ring and B ring of the molecular skeleton have relative higher plasma binding rates.In addition,the plasma binding rates of flavonoids with saturated C3-C4 bond decrease significantly with the increasing concentrations.  相似文献   

16.
A method of synthesizing Ni-based catalysts supported on α-Al2O3-based foams was developed. The foams were impregnated with aqueous solutions of metal chlorides under an air atmosphere using an aerosol route. Separate procedures involved calcination to form oxides and drying to obtain chlorides on the foam surface. The synthesized samples were subsequently reduced with hydrogen. With respect to the Ni/Al2O3 catalysts, the chloride reduction route enabled the formation ofa Ni coating without agglomerates or cracks. Further research included catalyst modification by the addition of Pd, Cu, and Fe. The influences of the additives on the degree of reduction and on the low-temperature reduction effectiveness (533 and 633 K) were examined and compared for the catalysts obtained from oxides and chlorides. Greater degrees of reduction were achieved with chlorides, whereas Pd was the most effective modifier among those investigated. The reduction process was nearly complete at 533 K in the sample that contained 0.1wt% Pd. A lower reduction temperature was utilized, and the calcination step was avoided, which may enhance the economical and technological aspects of the developed catalyst production method.  相似文献   

17.
The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.  相似文献   

18.
The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (Cs) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (Ls). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO (αCaO), with no deterioration of Cs compared with conventional desulfurization slag. The measured Ls between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.  相似文献   

19.
Abstract: To enable the use of metallic components in direct methanol fuel cells (DMFCs), issues related to corrosion resistance must be considered because of an acid environment induced by the solid electrolyte. In this study, we report the electrochemical behaviors of metal-fiber-based porous sintered components in a simulated corrosive environment of DMFCs. Three materials were evaluated: pure copper, AISI304, and AISI316L. The environmental factors and related mechanisms affecting the corrosion behaviors were analyzed. The results demonstrated that AISI316L exhibits the best performance. A higher SO4^2- concentration increases the risk of material corrosion, whereas an increase in methanol concentration inhibits corrosion. The morphological features of the corroded samples were also characterized in this study.  相似文献   

20.
The effect of substrate doping on the threshold voltages of buried channel pMOSFET based on strained-SiGe technology was studied. By physically deriving the models of the threshold voltages, it is found that the layer which inversely occurs first is substrate doping dependent, giving explanation for the variation of plateau observed in theC-V characteristics of this device, as the doping concentration increases. The threshold voltages obtained from the proposed model are-1.2805 V for buried channel and-2.9358 V for surface channel at a lightly doping case, and-3.41 V for surface channel at a heavily doping case, which agrees well with the experimental results. Also, the variations of the threshold voltages with several device parameters are discussed, which provides valuable reference to the designers of strained-SiGe devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号