共查询到12条相似文献,搜索用时 15 毫秒
1.
A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction
and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating resin for Pb2+ were studied by batch adsorption, and the adsorption process was analyzed from thermodynamics and kinetics aspects. The adsorption
mechanism of Pb2+ on the modified D401 chelating resin was discussed by FT-IR spectrometry. Experimental results show that in the Pb2+ concentration range of 200–400 mg/L, the adsorption capacities of the modified D401 chelating resin for Pb2+ increase by 77%–129%, and Langmuir isothermal adsorption model is more suitable for the equilibrium adsorption data. Adsorption
is an endothermic process that runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid
film diffusion. The best pH value under adsorption condition is 4–5. The saturated resin can be regenerated by 3 mol/L nitric
acid, and the adsorption capacity remains stable after five consecutive adsorption-desorption cycles. The maximal static saturated
adsorption capacity of the resin is 206 mg/g at 333 K in the Pb2+ concentration range of 200–400 mg/L. The modified D401 chelating resin is an efficient adsorbent for the removal of Pb2+ from its single-metal ion solution.
Foundation item: Project(708049) supported by the Important Item Cultivation Foundation of Scientific Innovation Project of Colleges and Universities
of China 相似文献
2.
Removal of Pb^2+ and Cd^2+ by adsorption on clay-solidified grouting curtain for waste landfills 总被引:7,自引:0,他引:7
Pb^2+ and Cd^2+ in leachate were adsorbed on clay-solidified grouting curtain for waste landfills with equilibrium experiment. The cation exchange capacity was determined with ammonium acetate. And the concentration of heavy metal cations in leachate was determined with atomic absorption spectrophotometer. Their equilibrium isotherms were measured, and the experimental isotherm data were analyzed by using Freundlich and Langmuir models. The results show that the adsorption capacities of the heavy metal cations are closely related to the compositions of clay-solidified grouting curtain, and the maximum adsorption appears at the ratio of cement to clay of 2 : 4 in the experimental conditions. At their maximum adsorption and pH 5.0, the adsorption capacities of Pb^2+ and Cd^2+ are 16.19 mg/g and 1.21 mg/g. The competitive adsorption coefficients indicate that the adsorption of clay-solidified grouting curtain for Pb^2+ is stronger than that for Cd^2+. The adsorption process conforms to Freundlich's model with related coefficient higher than 0. 996. 相似文献
3.
Four types of common seaweeds(Laminaria japonica,Undaria pinnatifida,Porphyra haitanensis,and Gracilaria lemaneiformis) were examined to remove Cr(Ⅵ) ions from aqueous solution.The experimental parameters that affected the biosorption process including pH,biomass dosage,contact time and temperature were investigated via batch experiments.The surface characteristics of seaweeds before and after Cr(Ⅵ) adsorption were studied with scanning electron microscopy and Fourier transform infrared spectroscopy.The results show that an initial solution with the pH of 1.0 is most favorable for Cr(Ⅵ) adsorption.Rapid adsorption is observed in the initial stage and adsorption equilibrium state is reached within 1 h.The adsorption efficiency by Porphyra haitanensis is the maximum among four types of seaweed powders,followed by Laminaria japonica and Undaria pinnatifida with biosorption efficiency up to 90%.The removal rate of Gracilaria lemaneiformis is less than 60%.The kinetic data obtained using the seaweeds are found to follow pseudo-second order kinetic model.Experimental sorption data adequately correlate with the Langmuir model.FTIR indicates that amino and carboxyl groups play an important role in the process of Cr(Ⅵ) adsorption and a large percentage of Cr(Ⅵ) ions are reduced by reductive groups on the surface of seaweeds. 相似文献
4.
In order to synthesize ZnO nanoparticles economically, industrial-grade zinc sulfate and urea were utilized to synthesize
ZnO precursors in a stirred-tank reactor or a Teflon-lined autoclave at 100–180 °C under complete sealing condition. The ZnO
precursors were calcined at 450 °C for 3 h to synthesize ZnO nanoparticles. The composition of the precursors and the formation
mechanism of ZnO were studied by thermogravimetric analysis and Fourier transform infrared spectroscopy. The results of X-ray
diffraction, transmission electron microscopy and scanning electron microscopy of the ZnO powders demonstrate that high-purity
zincite ZnO nanoparticles are synthesized. Orthogonal experiments were performed to find out the optimal conditions for the
maximum yield and the minimum size. The effect of temperature on the size of ZnO nanoparticles was investigated. The results
show that a higher temperature is propitious to obtain smaller nanoparticles. 相似文献
5.
6.
The dissolution mechanism of hemimorphite in NH3-(NH4)2SO4-H2O system at 298.15 K was investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. The results show that hemimorphite is soluble in NH3-(NH4)2SO4-H2O system and its residue exists in the form of an amorphous SiO2 layer on the hemimorphite surface. The XPS data also indicate that the Si 2p3/2 and O ls spectra of the hemimorphite are broadened and shift to higher binding energies and their binding energies are closer to silica with an increase of total ammonia and time. Solubility of hemimorphite in NH3-(NH4)2SO4-H2O system was measured by means of isothermal solution method at 298.15 K based on the study of the dissolution mechanism of hemimorphite. The results show that the solubility of zinc in solution increases firstly and then decreases with the increase of cr(NH3) (total ammonia concentration) at different NH3/NH4^+ ratios. The solubility of silicon in solution decreases from 0.0334 mol/kg in ct(NH3)-4.1245 mol/kg NH3-(NH4)2SO4-H2O solution to 0.0046 mol/kg in cT(NH3)=7.6035 mol/kg NH3-(NH4)2SO4-H2O solution. 相似文献
7.
A novel synthesis of LiFePO4/C from Fe2O3 with no extra carbon or carbon-containing reductant was introduced: Fe2O3 (+NH4H2PO4)→Fe2P2O7(+Li2CO3+glucose)→LiFePO4/C. X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were utilized to characterize relevant products obtained in the synthetic procedure. The reaction of Fe2P2O7 and Li2CO3 was investigated by thermo-gravimetric and differential thermal analysis (TGA-DTA). Fe2O3 is completely reduced to Fe2P2O7 by NH4H2PO4 at 700 ℃ and Fe2P2O7 fully reacts with Li2CO3 to form LiFePO4 in the temperature range of 663.4-890 ℃. The primary particles of LiFePO4/C samples prepared at 670, 700 and 750 ℃ respectively exhibit uniform morphology and narrow size distribution, 0.5-3 μm for those obtained at 670 and 700 ℃ and 0.5-5 μm for those obtained at 750 ℃. LiFePO4/C (carbon content of 5.49%, mass fraction) made at 670 ℃ shows an appreciable average capacity of 153.2 mA·h/g at 0.1C in the first 50 cycles. 相似文献
8.
9.
10.
11.
Perfluorinated alkyl silicone oil (PFASO) was successfully synthesized from N-ethyl-N- hydroxylethyl perfluorinated octane sulfonamide, succinie anhydride and amino silicone oil by esterification and amide reaction at moderate temperature in the presence of different catalysts. The chemical structure of the synthesized samples was characterized by Fourier transform infrared spectroscopy (FT-IR), the relative molecular mass(MM) and molecular mass distribution(MMD) of PFASO were tested by gel filtration chromatography(GFC). A commercial epoxy resin (DGEBA) was modified with PFASO, with the content of PFASO 1-5 phr. Thermo-gravimetric analysis (TGA), impact tests, scanning electron microscope (SEM) and water contact angle test were applied to provide accurate results on the thermal stability, toughness and hydrophobicity of PFASO/epoxy complex. The experimental results reveal that epoxy resins can be successfully modified by adding a small amount of as-synthesized modifiers via simple direct mixing, and verify that the as-synthesized modifier can improve the toughness and hydrophobicity of epoxy resin without sacrificing its thermal properties. 相似文献
12.
The mechanism of removing phosphate by MSWI (municipal solid waste incineration) fly ash was investigated by SEM (scanning electron microscopy) with EDS (energy dispersion spectrum),XRD (X-ray diffraction),FT-IR (Fourier transform infrared spectroscopy),BET (specific surface area),and BJH (pore size distribution).The results indicate that the removal rate of phosphate (100 mg/L) in 50 mL phosphorus wastewater reaches at 99.9% as the dosage of MSWI fly ash being 0.9000 g under room temperature.The specific surface area of MSWI fly ash is less than 6.1 m2/g and the total pore volume is below 0.021 cm3/g,suggesting that the absorption capacity of calcite is too weak to play an important role in phosphate removal.SEM images show that drastic changes had taken place on its specific surface shape after reaction,and EDS tests indicate that some phosphate precipitates are formed and attached onto MSWI fly ash particles.Chemical precipitation is the main manner of phosphate removal and the main reaction is:3Ca2++2 PO43-+xH2O→Ca3(PO4)2↓·xH2O.Besides,XRD tests show that the composition of MSWI fly ash is complex,but CaSO4 is likely to be the main source of Ca2+.The soluble heavy metals in MSWI fly ash are stabilized by phosphate. 相似文献