共查询到16条相似文献,搜索用时 69 毫秒
1.
2.
运用一种全量子模型研究基于氧化铪的高k栅介质纳米MOSFET栅电流,该方法特别适用于高k栅介质纳米MOS器件,还能用于多层高k栅介质纳米MOS器件。使用该方法研究了基于氧化铪高k介质氮含量等元素对栅极电流的影响。结果显示,为最大限度减少MOS器件的栅电流,需要优化介质中氮含量、铝含量。 相似文献
3.
4.
5.
6.
7.
8.
9.
采用自洽解方法求解一维薛定谔方程和二维泊松方程,得到电子的量子化能级和相应的浓度分布,利用MWKB方法计算电子隧穿几率,从而得到不同栅偏置下超薄栅介质MOSFET的直接隧穿电流模型。一维模拟结果与实验数据十分吻合,表明了模型的准确性和实用性。二维模拟结果表明,低栅压下,沟道边缘隧穿电流远大于沟道中心隧穿电流,沟道各处的隧穿电流均大于一维模拟结果;高栅压下,隧穿电流在沟道的分布趋于一致,且逼近一维模拟结果。 相似文献
10.
11.
介绍了一种纳米MOSFET(场效应管)栅电流的统一模型,该模型基于Schrodinger-Poisson方程自洽全量子数值解,特别适用于高k栅介质和多层高k栅介质纳米MOSFET.运用该方法计算了各种结构和材料高k介质的MOSFET栅极电流,并对pMOSFET和nMOSFET高k栅结构进行了分析比较.模拟得出栅极电流与实验结果符合,而得出的优化氮含量有待实验证实. 相似文献
12.
In this paper, novel nanoscale MOSFET with Source/Drain-to-Gate Non-overlapped and high-k spacer structure has been demonstrated to reduce the gate leakage current for the first time. The gate leakage behaviour of novel MOSFET structure has been investigated with help of compact analytical model and Sentaurus Simulation. Fringing gate electric field through the dielectric spacer induces inversion layer in the non-overlap region to act as extended S/D region. It is found that optimal Source/Drain-to-Gate Non-overlapped and high-k spacer structure has reduced the gate leakage current to great extent as compared to those of an overlapped structure. Further, the proposed structure had improved off current, subthreshold slope and DIBL characteristic. It is concluded that this structure solves the problem of high leakage current without introducing the extra series resistance. 相似文献
13.
利用非平衡格林函数法处理开放边界条件的薛定谔方程,与泊松方程自洽求解,在实空间实现了对纳米量级双栅MOS器件的二维量子模拟。与模空间法的仿真效率及模拟结果进行了比较,对栅极漏电流受栅介质、栅与源漏交叠、栅氧层厚度的影响进行了研究。 相似文献
14.
基于非平衡格林函数(NEGF)的量子输运理论框架,对双栅MOSFET进行了二维实空间数值模拟。在对表征载流子电势的泊松方程自洽求解后,感兴趣的物理量(如亚阈值摆幅、漏致势垒下降、载流子密度、电流密度等)可以被求得,观察了由栅极注入效应导致的二维电荷分布,并对不同电介质材料对栅极漏电流的影响进行了研究。此外,还通过调整电介质参数并进行比较的方法,研究了电介质的有效质量、介电常数、导带偏移对栅极漏电流的影响。该模拟方法为双栅MOSFET中载流子自栅极的注入提供了良好的物理图景,对器件特性的分析和比较有助于栅氧层高k电介质材料的选取。 相似文献
15.
16.
文章提出了基于Levenberg—Marquardt BP神经网络的MOSFET反型层载流子密度量子更正模型.对于较大氧化层厚度范围、Si层厚度范围、栅压范围和掺杂浓度范围的单栅以及双MOSFET.Si反型层备点的载流子量子密度都可以通过经典载流子密度进行快速预测,预测结果与Schrodinger—Poisson程的平均相对误差不超过5%。 相似文献