首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 69 毫秒
1.
王伟  孙建平  顾宁 《半导体学报》2006,27(7):1170-1176
介绍了一种纳米MOSFET(场效应管)栅电流的统一模型,该模型基于Schrodinger-Poisson方程自洽全量子数值解,特别适用于高k栅介质和多层高k栅介质纳米MOSFET.运用该方法计算了各种结构和材料高k介质的MOSFET栅极电流,并对pMOSFET和nMOSFET高k栅结构进行了分析比较.模拟得出栅极电流与实验结果符合,而得出的优化氮含量有待实验证实.  相似文献   

2.
运用一种全量子模型研究基于氧化铪的高k栅介质纳米MOSFET栅电流,该方法特别适用于高k栅介质纳米MOS器件,还能用于多层高k栅介质纳米MOS器件。使用该方法研究了基于氧化铪高k介质氮含量等元素对栅极电流的影响。结果显示,为最大限度减少MOS器件的栅电流,需要优化介质中氮含量、铝含量。  相似文献   

3.
刘晓彦  康晋锋  韩汝琦 《半导体学报》2002,23(10):1009-1014
提出了包括有限势垒高度下反型层量子化效应以及多晶硅耗尽效应在内的直接隧穿电流模型 .在该模型的基础上 ,研究了采用不同高介电常数栅介质材料时MOSFET的栅电流与介质材料的介电常数、禁带宽度及和Si导带不连续等参数之间的关系 .所获得的结果能够为新型栅介质材料的选取提供依据 .  相似文献   

4.
高k栅介质MOSFET的栅电流模型   总被引:1,自引:0,他引:1  
刘晓彦  康晋锋  韩汝琦 《半导体学报》2002,23(10):1009-1013
提出了包括有限势垒高度下反型层量子化效应以及多晶硅耗尽效应在内的直接隧穿电流模型.在该模型的基础上,研究了采用不同高介电常数栅介质材料时MOSFET的栅电流与介质材料的介电常数、禁带宽度及和Si导带不连续等参数之间的关系.所获得的结果能够为新型栅介质材料的选取提供依据.  相似文献   

5.
提出了包括有限势垒高度下反型层量子化效应以及多晶硅耗尽效应在内的直接隧穿电流模型.在该模型的基础上,研究了采用不同高介电常数栅介质材料时MOSFET的栅电流与介质材料的介电常数、禁带宽度及和Si导带不连续等参数之间的关系.所获得的结果能够为新型栅介质材料的选取提供依据.  相似文献   

6.
王伟  孙建平  徐丽娜  顾宁   《电子器件》2006,29(3):617-619,623
采用Schroedinger-Poisson方程自洽全量子求解法研究了MOS器件不同介质材料和栅结构栅电流,该模型对栅电流中的三维电流成分用行波统一地计算;对二维栅电流成分通过反型层势阱中准束缚态的隧穿率计算。模拟得出栅极电流与实验结果符合。研究结果表明,采用高愚栅介质材料、p-MOSFET或双栅结构对栅电流的减少有明显的作用,这一结果可望对器件性能作出预计并对其研制提供指导。  相似文献   

7.
深亚微米MOS器件中栅介质层的直接隧穿电流   总被引:2,自引:3,他引:2  
在WKB近似的理论框架下,提出了一个MOS器件中栅介质层直接隧穿电流的模型.在这个模型中,空穴量子化采用了一种改进的单带有效质量近似方法,这种方法考虑了价带的混合效应.通过与试验结果的对比,证明了这个模型可以适用于CMOS器件中电子和空穴的隧穿电流.还研究了介质层能隙中的色散对隧穿电流的影响.这个模型还可以进一步延伸到对未来高介电常数栅介质层中隧穿电流的研究.  相似文献   

8.
在WKB近似的理论框架下,提出了一个MOS器件中栅介质层直接隧穿电流的模型.在这个模型中,空穴量子化采用了一种改进的单带有效质量近似方法,这种方法考虑了价带的混合效应.通过与试验结果的对比,证明了这个模型可以适用于CMOS器件中电子和空穴的隧穿电流.还研究了介质层能隙中的色散对隧穿电流的影响.这个模型还可以进一步延伸到对未来高介电常数栅介质层中隧穿电流的研究.  相似文献   

9.
采用自洽解方法求解一维薛定谔方程和二维泊松方程,得到电子的量子化能级和相应的浓度分布,利用MWKB方法计算电子隧穿几率,从而得到不同栅偏置下超薄栅介质MOSFET的直接隧穿电流模型。一维模拟结果与实验数据十分吻合,表明了模型的准确性和实用性。二维模拟结果表明,低栅压下,沟道边缘隧穿电流远大于沟道中心隧穿电流,沟道各处的隧穿电流均大于一维模拟结果;高栅压下,隧穿电流在沟道的分布趋于一致,且逼近一维模拟结果。  相似文献   

10.
朱述炎  叶青  汪礼胜  徐静平 《微电子学》2014,(2):237-240,244
利用半导体仿真工具Silvaco TCAD,研究了高k栅介质InGaAs MOSFET的三种结构:缓冲层结构、侧墙结构和基本结构。通过对三种结构MOSFET的阈值电压、亚阈值摆幅以及漏源电流进行比较分析,得出缓冲层结构InGaAs MOSFET具有最佳的电学特性,侧墙结构的MOSFET次之。进一步分析发现,当缓冲层结构InGaAs MOSFET的沟道厚度大于80nm时,可获得稳定的电性能。  相似文献   

11.
介绍了一种纳米MOSFET(场效应管)栅电流的统一模型,该模型基于Schrodinger-Poisson方程自洽全量子数值解,特别适用于高k栅介质和多层高k栅介质纳米MOSFET.运用该方法计算了各种结构和材料高k介质的MOSFET栅极电流,并对pMOSFET和nMOSFET高k栅结构进行了分析比较.模拟得出栅极电流与实验结果符合,而得出的优化氮含量有待实验证实.  相似文献   

12.
In this paper, novel nanoscale MOSFET with Source/Drain-to-Gate Non-overlapped and high-k spacer structure has been demonstrated to reduce the gate leakage current for the first time. The gate leakage behaviour of novel MOSFET structure has been investigated with help of compact analytical model and Sentaurus Simulation. Fringing gate electric field through the dielectric spacer induces inversion layer in the non-overlap region to act as extended S/D region. It is found that optimal Source/Drain-to-Gate Non-overlapped and high-k spacer structure has reduced the gate leakage current to great extent as compared to those of an overlapped structure. Further, the proposed structure had improved off current, subthreshold slope and DIBL characteristic. It is concluded that this structure solves the problem of high leakage current without introducing the extra series resistance.  相似文献   

13.
利用非平衡格林函数法处理开放边界条件的薛定谔方程,与泊松方程自洽求解,在实空间实现了对纳米量级双栅MOS器件的二维量子模拟。与模空间法的仿真效率及模拟结果进行了比较,对栅极漏电流受栅介质、栅与源漏交叠、栅氧层厚度的影响进行了研究。  相似文献   

14.
基于非平衡格林函数(NEGF)的量子输运理论框架,对双栅MOSFET进行了二维实空间数值模拟。在对表征载流子电势的泊松方程自洽求解后,感兴趣的物理量(如亚阈值摆幅、漏致势垒下降、载流子密度、电流密度等)可以被求得,观察了由栅极注入效应导致的二维电荷分布,并对不同电介质材料对栅极漏电流的影响进行了研究。此外,还通过调整电介质参数并进行比较的方法,研究了电介质的有效质量、介电常数、导带偏移对栅极漏电流的影响。该模拟方法为双栅MOSFET中载流子自栅极的注入提供了良好的物理图景,对器件特性的分析和比较有助于栅氧层高k电介质材料的选取。  相似文献   

15.
周松  蒋建飞  蔡琪玉 《电子学报》2005,33(2):301-303
本文用非平衡Green函数方法和模式表象技术对弹道MOSFET中的栅隧穿电流进行了研究.为了简化计算,我们把栅分解成一系列的小栅并用相应的自能项来概括它们.计算结果表明栅电势和栅绝缘层厚度是起主导作用的因素.尽管沟道区态密度的复杂变化和硅层的厚度对栅隧穿电流也有影响,但并不显著.  相似文献   

16.
文章提出了基于Levenberg—Marquardt BP神经网络的MOSFET反型层载流子密度量子更正模型.对于较大氧化层厚度范围、Si层厚度范围、栅压范围和掺杂浓度范围的单栅以及双MOSFET.Si反型层备点的载流子量子密度都可以通过经典载流子密度进行快速预测,预测结果与Schrodinger—Poisson程的平均相对误差不超过5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号