首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zellweger syndrome and related diseases are caused by defective import of peroxisomal matrix proteins. In all previously reported Zellweger syndrome cell lines the defect could be assigned to the matrix protein import pathway since peroxisome membranes were present, and import of integral peroxisomal membrane proteins was normal. However, we report here a Zellweger syndrome patient (PBD061) with an unusual cellular phenotype, an inability to import peroxisomal membrane proteins. We also identified human PEX16, a novel integral peroxisomal membrane protein, and found that PBD061 had inactivating mutations in the PEX16 gene. Previous studies have suggested that peroxisomes arise from preexisting peroxisomes but we find that expression of PEX16 restores the formation of new peroxisomes in PBD061 cells. Peroxisome synthesis and peroxisomal membrane protein import could be detected within 2-3 h of PEX16 injection and was followed by matrix protein import. These results demonstrate that peroxisomes do not necessarily arise from division of preexisting peroxisomes. We propose that peroxisomes may form by either of two pathways: one that involves PEX11-mediated division of preexisting peroxisomes, and another that involves PEX16-mediated formation of peroxisomes in the absence of preexisting peroxisomes.  相似文献   

2.
Peroxisomes are small organelles with a single boundary membrane. All of their matrix proteins are nuclear-encoded, synthesized on free ribosomes in the cytosol, and post-translationally transported into the organelle. This may sound familiar, but in fact, peroxisome biogenesis is proving to be surprisingly unique. First, there are several classes of plant peroxisomes, each specialized for a different metabolic function and sequestering specific matrix enzymes. Second, although the mechanisms of peroxisomal protein import are conserved between the classes, multiple pathways of protein targeting and translocation have been defined. At least two different types of targeting signals direct proteins to the peroxisome matrix. The most common peroxisomal targeting signal is a tripeptide limited to the carboxyl terminus of the protein. Some peroxisomal proteins possess an amino-terminal signal which may be cleaved after import. Each targeting signal interacts with a different cytosolic receptor; other cytosolic factors or chaperones may also form a complex with the peroxisomal protein before it docks on the membrane. Peroxisomes have the unusual capacity to import proteins that are fully folded or assembled into oligomers. Although at least 20 proteins (mostly peroxins) are required for peroxisome biogenesis, the role of only a few of these have been determined. Future efforts will be directed towards an understanding of how these proteins interact and contribute to the complex process of protein import into peroxisomes.  相似文献   

3.
All peroxisomal proteins are nuclear encoded, synthesized on free cytosolic ribosomes, and posttranslationally targeted to the organelle. We have used an in vitro assay to reconstitute protein import into pumpkin (Cucurbita pepo) glyoxysomes, a class of peroxisome found in the cotyledons of oilseed plants, to study the mechanisms involved in protein transport across peroxisome membranes. Results indicate that ATP hydrolysis is required for protein import into peroxisomes; nonhydrolyzable analogs of ATP could not substitute for this requirement. Nucleotide competition studies suggest that there may be a nucleotide binding site on a component of the translocation machinery. Peroxisomal protein import also was supported by GTP hydrolysis. Nonhydrolyzable analogs of GTP did not substitute in this process. Experiments to determine the cation specificity of the nucleotide requirement show that the Mg2+ salt was preferred over other divalent and monovalent cations. The role of a putative protonmotive force across the peroxisomal membrane was also examined. Although low concentrations of ionophores had no effect on protein import, relatively high concentrations of all ionophores tested consistently reduced the level of protein import by approximately 50%. This result suggests that a protonmotive force is not absolutely required for peroxisomal protein import.  相似文献   

4.
The peroxisomal flavoprotein alcohol oxidase (AO) is an octamer (600 kDa) consisting of eight identical subunits, each of which contains one flavin adenine dinucleotide molecule as a cofactor. Studies on a riboflavin (Rf) auxotrophic mutant of the yeast Hansenula polymorpha revealed that limitation of the cofactor led to drastic effects on AO import and assembly as well as peroxisome proliferation. Compared to wild-type control cells Rf-limitation led to 1) reduced levels of AO protein, 2) reduced levels of correctly assembled and activated AO inside peroxisomes, 3) a partial inhibition of peroxisomal protein import, leading to the accumulation of precursors of matrix proteins in the cytosol, and 4) a significant increase in peroxisome number. We argue that the inhibition of import may result from the saturation of a peroxisomal molecular chaperone under conditions that normal assembly of a major matrix protein inside the target organelle is prevented.  相似文献   

5.
Protein translocation into peroxisomes takes place via recognition of a peroxisomal targeting signal present at either the extreme C termini (PTS1) or N termini (PTS2) of matrix proteins. In mammals and yeast, the peroxisomal targeting signal receptor, Pex5p, recognizes the PTS1 consisting of -SKL or variants thereof. Although many plant peroxisomal matrix proteins are transported through the PTS1 pathway, little is known about the PTS1 receptor or any other peroxisome assembly protein from plants. We cloned tobacco (Nicotiana tabacum) cDNAs encoding Pex5p (NtPEX5) based on the protein's interaction with a PTS1-containing protein in the yeast two-hybrid system. Nucleotide sequence analysis revealed that the tobacco Pex5p contains seven tetratricopeptide repeats and that NtPEX5 shares greater sequence similarity with its homolog from humans than from yeast. Expression of NtPEX5 fusion proteins, consisting of the N-terminal part of yeast Pex5p and the C-terminal region of NtPEX5, in a Saccharomyces cerevisiae pex5 mutant restored protein translocation into peroxisomes. These experiments confirmed the identity of the tobacco protein as a PTS1 receptor and indicated that components of the peroxisomal translocation apparatus are conserved functionally. Two-hybrid assays showed that NtPEX5 interacts with a wide range of PTS1 variants that also interact with the human Pex5p. Interestingly, the C-terminal residues of some of these peptides deviated from the established plant PTS1 consensus sequence. We conclude that there are significant sequence and functional similarities between the plant and human Pex5ps.  相似文献   

6.
Catalase is a ubiquitous peroxisomal matrix enzyme, yet the molecular targeting signal(s) for sorting it in plant cells has not been defined. The most common peroxisome targeting signal (PTS) is a C-terminal tripeptide composed of a conserved SKL motif (type 1 PTS). The PTS for cottonseed catalase (Ccat) was elucidated in this study from immunofluorescence microscopic analyses of tobacco BY-2 suspension cells serving as an in vivo import system. To distinguish biolistically introduced Ccat from endogenous tobacco catalase, Ccat was hemagglutinin (HA)epitope-tagged at its N-terminus. Bombardment with HA-Ccat resulted in the import of Ccat into glyoxysomes, the specialized type of peroxisome in BY-2 cells. The C-terminal tripeptide of Ccat, PSI, is necessary for import. Evidence for this were mislocalizations to the cytosol of PSI-truncated Ccat and AGV-substituted (for PSI) Ccat. PSI-COOH, however, was not sufficient to re-route chloramphenicol acetyltransferase (CAT) from the cytosol to glyoxysomes, whereas the Ccat tetrapeptide RPSI-COOH was sufficient. Surprisingly, substitution of K (common at the fourth position in other plant catalases) for the R (CAT-KPSI) decreased import efficiency. However, substitution of K did not affect import, when additional upstream residues in Ccat were included (e.g. CAT-NVKPSI). Other evidence for the importance of upstream residues comprised abolishment of Ccat import due to substitutions with non-conserved residues (e.g. -AGVNVRPSI for -SRLNVRPSI). These data indicate that Ccat is sorted to plant peroxisomes by a degenerate type 1 PTS (PSI-COOH) whose residues are functionally dependent on a strict context of adjacent C-terminal amino acid residues.  相似文献   

7.
Two targeting signals, PTS1 and PTS2, mediate import of proteins into the peroxisomal matrix. We have cloned and sequenced the watermelon (Citrullus vulgaris) cDNA homologue to the PTS1 receptor gene (PEX5). Its gene product, CvPex5p, belongs to the family of tetratricopeptide repeat (TPR) containing proteins like the human and yeast counterparts, and exhibits 11 repeats of the sequence W-X2-(E/S)-(Y/F/Q) in its N-terminal half. According to fractionation studies the plant Pex5p is located mainly in the cytosolic fraction and therefore could function as a cycling receptor between the cytosol and glyoxysomes, as has been proposed for the Pex5p of human and some yeast peroxisomes. Transformation of the Hansenula polymorpha peroxisome deficient pex5 mutant with watermelon PEX5 resulted in restoration of peroxisome formation and the synthesis of additional membranes surrounding the peroxisomes. These structures are labeled in immunogold experiments using antibodies against the Hansenula polymorpha integral membrane protein Pex3p, confirming their peroxisomal nature. The plant Pex5p was localized by immunogold labelling mainly in the cytosol of the yeast, but also inside the newly formed peroxisomes. However, import of the PTS1 protein alcohol oxidase is only partially restored by CvPex5p.  相似文献   

8.
9.
We have cloned the Hansenula polymorpha PEX4 gene by functional complementation of a peroxisome-deficient mutant. The PEX4 translation product, Pex4p, is a member of the ubiquitin-conjugating enzyme family. In H.polymorpha, Pex4p is a constitutive, low abundance protein. Both the original mutant and the pex4 deletion strain (Deltapex4) showed a specific defect in import of peroxisomal matrix proteins containing a C-terminal targeting signal (PTS1) and of malate synthase, whose targeting signal is not yet known. Import of the PTS2 protein amine oxidase and the insertion of the peroxisomal membrane proteins Pex3p and Pex14p was not disturbed in Deltapex4 cells. The PTS1 protein import defect in Deltapex4 cells could be suppressed by overproduction of the PTS1 receptor, Pex5p, in a dose-response related manner. In such cells, Pex5p is localized in the cytosol and in peroxisomes. The peroxisome-bound Pex5p specifically accumulated at the inner surface of the peroxisomal membrane and thus differed from Pex5p in wild-type peroxisomes, which is localized throughout the matrix. We hypothesize that in H. polymorpha Pex4p plays an essential role for normal functioning of Pex5p, possibly in mediating recycling of Pex5p from the peroxisome to the cytosol.  相似文献   

10.
11.
Cecropin B is a small antibacterial peptide from the giant silkmoth Hyalophora cecropia. To reveal the potential of this peptide for engineering bacterial disease resistance into crops, several cecropin B gene constructs were made either for expression in the cytosol or for secretion. All constructs were cloned in a plant expression vector and introduced in tobacco via Agrobacterium tumefaciens. A cDNA-derived cecropin B gene construct lacking the amino-terminal signal peptide was poorly expressed in transgenic plants at the mRNA level, whereas plants harbouring a full-length cDNA-derived construct containing the insect signal peptide, showed increased cecropin B-mRNA levels. Highest expression was found in plants harbouring a construct with a plant-gene-derived signal peptide. In none of the transgenic plants could the cecropin B peptide be detected. This is most likely caused by breakdown of the peptide by plant endogenous proteases, since a chemically synthesized cecropin B peptide was degraded within seconds in various plant cell extracts. This degradation could be prevented by the addition of specific protease inhibitors and by boiling the extract prior to adding the peptide. In addition, anionic detergents, in contrast to cationic, zwitter-ionic or non-ionic detergents, could prevent this degradation. Nevertheless, transgenic tobacco plants were evaluated for resistance to Pseudomonas solanacearum, the causal agent of bacterial wilt of many crops, and P. syringae pv. tabaci, the causal agent of bacterial wildfire, which are highly susceptible to cecropin B in vitro. No resistance was found. These experiments indicate that introduction and expression of cecropin B genes in tobacco does not result in detectable cecropin B protein levels and resistance to bacterial infections, most likely due to degradation of the protein by endogenous proteases.  相似文献   

12.
13.
Transport of viruses from cell to cell in plants typically involves one or more viral proteins that supply dedicated movement functions. Transport from leaf to leaf through phloem, or long-distance transport, is a poorly understood process with requirements differing from those of cell-to-cell movement. Through genetic analysis of tobacco etch virus (TEV; potyvirus group), a novel long-distance movement factor was identified that facilitates vascular-associated movement in tobacco. A mutation in the central region of the helper component proteinase (HC-Pro), a TEV-encoded protein with previously described activities in aphid-mediated transmission and polyprotein processing, inactivated long-distance movement. This mutant virus exhibited only minor defects in genome amplification and cell-to-cell movement functions. In situ histochemical analysis revealed that the mutant was capable of infecting mesophyll, bundle sheath, and phloem cells within inoculated leaves, suggesting that the long-distance movement block was associated with entry into or exit from sieve elements. The long-distance movement defect was specifically complemented by HC-Pro supplied in trans by a transgenic host. The data indicate that HC-Pro functions in one or more steps unique to long-distance transport.  相似文献   

14.
Peroxisome-to-mitochondrion mistargeting of the homodimeric enzyme alanine:glyoxylate aminotransferase 1 (AGT) in the autosomal recessive disease primary hyperoxaluria type 1 (PH1) is associated with the combined presence of a normally occurring Pro(11)Leu polymorphism and a PH1-specific Gly170Arg mutation. The former leads to the formation of a novel NH2-terminal mitochondrial targeting sequence (MTS), which although sufficient to direct the import of in vitro-translated AGT into isolated mitochondria, requires the additional presence of the Gly170Arg mutation to function efficiently in whole cells. The role of this mutation in the mistargeting phenomenon has remained elusive. It does not interfere with the peroxisomal targeting or import of AGT. In the present study, we have investigated the role of the Gly170Arg mutation in AGT mistargeting. In addition, our studies have led us to examine the relationship between the oligomeric status of AGT and the peroxisomal and mitochondrial import processes. The results obtained show that in vitro-translated AGT rapidly forms dimers that do not readily exchange subunits. Although the presence of the Pro(11)Leu or Gly170Arg substitutions alone had no effect on dimerization, their combined presence abolished homodimerization in vitro. However, AGT containing both substitutions was still able to form heterodimers in vitro with either normal AGT or AGT containing either substitution alone. Expression of various combinations of normal and mutant, as well as epitope-tagged and untagged forms of AGT in whole cells showed that normal AGT rapidly dimerizes in the cytosol and is imported into peroxisomes as a dimer. This dimerization prevents mitochondrial import, even when the AGT possesses an MTS generated by the Pro(11)Leu substitution. The additional presence of the Gly170Arg substitution impairs dimerization sufficiently to allow mitochondrial import. Pharmacological inhibition of mitochondrial import allows AGT containing both substitutions to be imported into peroxisomes efficiently, showing that AGT dimerization is not a prerequisite for peroxisomal import.  相似文献   

15.
Pokeweed antiviral protein II (PAPII), a 30 kDa protein isolated from leaves of Phytolacca americana, inhibits translation by catalytically removing a specific adenine residue from the large rRNA of the 60S subunit of eukaryotic ribosomes. The protein sequence of PAPII shows only 41% identity to PAP and PAP-S, two other antiviral proteins isolated from pokeweed. We isolated a cDNA corresponding to PAPII and introduced it into tobacco plants. PAPII expressed in transgenic tobacco was correctly processed to the mature form as in pokeweed and accumulated to at least 10-fold higher levels than wild-type PAP. We had previously observed a significant decrease in transformation frequency with PAP and recovered only two transgenic lines expressing 1-2 ng per mg protein. In contrast, eight different transgenic lines expressing up to 250 ng/mg PAPII were recovered, indicating that PAPII is less toxic than PAP. Two symptomless transgenic lines expressing PAPII were resistant to tobacco mosaic virus, potato virus X and the fungal pathogen Rhizoctonia solani. The level of viral and fungal resistance observed correlated well with the amount of PAPII protein accumulated. Pathogenesis-related protein PR1 was constitutively expressed in transgenic lines expressing PAPII. Although PR1 was constitutively expressed, no increase in salicylic acid levels was detected, indicating that PAPII may elicit a salicylic acid-independent signal transduction pathway.  相似文献   

16.
The effects of subcellular localization on single-chain antibody (scFv) expression levels in transgenic tobacco was evaluated using an scFv construct of a model antibody possessing different targeting signals. For translocation into the secretory pathway a secretory signal sequence preceded the scFv gene (scFv-S). For cytosolic expression the scFv antibody gene lacked such a signal sequence (scFv-C). Also, both constructs were provided with the endoplasmic reticulum (ER) retention signal KDEL (scFv-SK and scFv-CK, respectively). The expression of the different scFv constructs in transgenic tobacco plants was controlled by a CaMV 35S promoter with double enhancer. The scFv-S and scFv-SK antibody genes reached expression levels of 0.01% and 1% of the total soluble protein, respectively. Surprisingly, scFv-CK transformants showed considerable expression of up to 0.2% whereas scFv-C transformants did not show any accumulation of the scFv antibody. The differences in protein expression levels could not be explained by the steady-state levels of the mRNAs. Transient expression assays with leaf protoplasts confirmed these expression levels observed in transgenic plants, although the expression level of the scFv-S construct was higher. Furthermore, these assays showed that both the secretory signal and the ER retention signal were recognized in the plant cells. The scFv-CK protein was located intracellularly, presumably in the cytosol. The increase in scFv protein stability in the presence of the KDEL retention signal is discussed.  相似文献   

17.
Serum samples from cigarette smokers, nonsmokers, and persons reporting "smoke sensitivity" were tested for IgE antibodies to tobacco leaf and smoke extracts by the radioallergosorbent test. Results indicated that none of the serum samples tested contained detectable IgE antibodies to smoke extracts. Occasionally, serum specimens from smokers or nonsmokers demonstrated reactivity to leaf antigen. The most significant reaction to leaf antigens was detected in serum from one of the 7 smoke-sensitive subjects tested. These results demonstrate that smoking, nonsmoking, and clinical "smoke sensitivity" are not correlated with the presence of IgE antibodies to tobacco leaf or smoke antigen.  相似文献   

18.
We recently isolated two cDNAs encoding importin 3 homologues (rice importin beta1 and beta2), the first such homologues identified in plants. To address the function of rice importin beta1 in the process of nuclear import of proteins, we carried out in vitro binding and nuclear import assays. Recombinant protein of rice importin beta1 assembled a complex (PTAC) with rice importin alpha1 and NLS protein, and also bound to the nuclear envelope of tobacco BY-2 cells. Ran-GTP, but not Ran-GDP, interacted with rice importin beta1 and dissociated the heterodimer formed between rice importin alpha1 and rice importin beta1. An in vitro nuclear import assay using digitonin-permeabilized HeLa cells revealed that rice importin beta1 can mediate nuclear envelope docking of NLS proteins and their subsequent translocation into the nucleus. These data strongly suggest that rice importin beta1 functions as a component of the NLS receptor in plant cells.  相似文献   

19.
pas mutants of Saccharomyces cerevisiae are disturbed in peroxisome assembly (pas) and proliferation. Here we report the characterization of the PAS10 gene and its product (PAS10) that is essential for the import of a large subset of proteins into the peroxisomal matrix. PAS10, a protein of 69 kDa, is a member of the tetratricopeptide repeat, or snap helix, protein family, characterized by several direct repeats of a degenerate 34-amino acid motif (Sikorski, R. S., Boguski, M. S., Goebl, M. & Hieter, P. (1990) Cell 60, 307-317). Other members of this family are MAS70 (S. cerevisiae) and MOM72 (Neurospora crassa), which are mitochondrial receptors for protein import. A pas10 null mutant accumulates peroxisomal, leaflet-like membrane structures and exhibits deficient import of a number of peroxisomal matrix enzymes, particularly of proteins with an SKL-like import signal. In contrast, 3-ketoacyl-CoA thiolase associated with these membranes is resistant in vitro to degradation by proteinase K, indicating true protein import. These results suggest that PAS10 is an essential component of a peroxisomal import machinery which mediates the translocation of a specific subset of proteins to the peroxisomal matrix with an SKL-like import signal.  相似文献   

20.
Expression and stability of immunoglobulins in transgenic plants have been investigated and optimized by accumulation in different cellular compartments as cytosol, apoplastic space and endoplasmic reticulum (ER) as will be discussed in this review. In several cases described the highest accumulation of complete active antibodies was achieved by targeting into the apoplastic space. High-level expression of active recombinant single-chain Fv antibodies (scFv's) was obtained by retention of these proteins in the lumen of the endoplasmic reticulum. This has been shown for leaves and seeds of transgenic tobacco as well as for potato tubers. Transgenic tobacco seeds, potato tubers and tobacco leaves can facilitate stable storage of scFv's accumulated in the ER over an extended (seeds, tubers) or a short (leaves) period of time. The expression of specific scFv's in different plant species, plant organs and cellular compartments offers the possibility of blocking regulatory factors or pathogens specifically. Examples are scFv's expressed in the cytosol and the apoplastic space of transgenic plant cells modulating the infection process of plant viruses and a cytosolically expressed scFv that influenced the activity of phytochrome A protein. The immunomodulation approach has been shown to be also applicable for investigating the action of the phyto-hormone abscisic acid (ABA). High-level accumulation of specific anti-ABA scFv's in the ER of all leaf cells has been used to block the influence of ABA on the stomatal functions. Seed-specific expression of high amounts of anti-ABA-scFv's at a defined time of seed-development induced a developmental switch from seed ripening to vegetative growth. It has been demonstrated that ER retention is essential for the accumulation of sufficient scFv to bind high concentrations of ABA in the transgenic seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号