首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 626 毫秒
1.
Phosphorus is one of the most important nutrients required to support various kinds of biodegradation processes. As this particular nutrient is not included in the activated sludge model no. 1 (ASM1), this study extended this model in order to determine the fate of phosphorus during the biodegradation processes. When some of the kinetics parameters are modified using observed data from the restoration project of the Xuxi River in Wuxi City, China, from August 25 to 31 in 2009, the extended model shows excellent results. In order to obtain optimum values of coefficients of nitrogen and phosphorus, the mass fraction method was used to ensure that the final results were reasonable and practically relevant. The temporal distribution of the data calculated with the extended ASM1 approximates that of the observed data.  相似文献   

2.
In order to deal with the environmental problems associated with animal production industrialization and at the same time considering energy costs increasing, a piggery wastewater treatment process consisting of combined anaerobic digestion and biological nitrogen removal by activated sludge was developed. This contribution presents a modelling framework in order to optimize this process. Modified versions of the well established ASM1 and ADM1 models have been used. The ADM1 was extended with biological denitrification. pH calculation and liquid gas-transfer were modified to take into account the effect of associated components. Finally, two interfaces (ADMtoASM and ASMtoADM) were built in order to combine both models. These interfaces set up the COD, nitrogen, alkalinity and charge fractionation between both models. However, for the mass balances between both models, some hypotheses were considered and might be evaluated.  相似文献   

3.
The practical applicability of computer simulation of aerobic biological treatment systems for winery effluents was investigated to enhance traditional on-site evaluation of new processes. As there is no existing modelling tool for pure winery effluent, a model widely used for municipal activated sludge (ASM1) was used. The calibration and validation steps were performed on extended on-site data. The global soluble COD, DO and OUR were properly reproduced. Possible causes for the remaining discrepancies between measured and simulated data were identified and suggestions for improvement directions were made to adapt ASM1 to winery effluents. The calibrated model was then used to simulate scenarios to evaluate the plant behaviour for different operation or design. In combination with on-site observations, it allowed us to establish useful and justified improvement suggestions for aeration tank and aeration device design as well as feed, draw and aeration operation.  相似文献   

4.

The general radial flow (GRF) could successfully analyze the groundwater flow in a fractured medium which has generally a more complex mechanism due to the scale-dependent heterogeneity and dynamic processes for both individual fracture and fracture networks. A new optimization scheme, referred to as the automatic shifting method (ASM), was established in order to eradicate the subjectivity and some definite difficulties in classical graphical curve matching (GCM) for the determination flow parameters of GRF from in-situ pumping test data. The logic behind the ASM is similar to GCM but it simplifies and enhances the estimation process by optimizing newly introduced parameters (the horizontal and vertical shifts) together with the flow dimension parameter via Water Cycle Algorithm (WCA). The proposed ASM was tested with several hypothetical pumping test scenarios as well as a number of real field data. In addition, the capability of WCA was thoroughly compared with other competitive derivative-free, nature inspired population-based optimization algorithms by implementing a multi decision criteria analysis. The proposed ASM with WCA could achieve the outstanding estimation performance for the implemented analyses. In conclusion, ASM has a great potential to be modified for interpreting test data obtained from different groundwater models.

  相似文献   

5.
During this study, a mathematical model simulating piggery wastewater treatment was developed, with the objective of process optimisation. To achieve this, the effect of temperature and free ammonia concentration on the nitrification rate were experimentally studied using respirometry. The maximum growth rates obtained were higher for ammonium-oxidising biomass than for nitrite-oxidising biomass for the temperatures above 20 degrees C; values at 35 degrees C were equal to 1.9 and 1.35 day(-1), respectively. No inhibition of nitrification was observed for free ammonia concentrations up to 50 mgN/L. Using these data with others experimental data obtained from a pilot-scale reactor to treat piggery wastewater, a model based on a modified version of the ASM1 was developed and calibrated. In order to model the nitrite accumulation observed, the ASM1 model was extended with a two-step nitrification and denitrification including nitrite as intermediate. Finally, the produced model called PiWaT1 demonstrated a good fit with the experimental data. In addition to the temperature, oxygen concentration was identified as an important factor influencing the nitrite accumulation during nitrification. Even if some improvements of the model are still necessary, this model can already be used for process improvement.  相似文献   

6.
The selector activated sludge (SAS) systems are known to prevent excessive growth of filamentous microorganisms responsible for bulking sludge, but these systems were hardly ever modelled. This study aimed to develop a model capable of predicting rapid substrate removal in the SAS systems. For this purpose, the Activated Sludge Model No. 3 (ASM3) was extended with three processes (adsorption, direct growth on the adsorbed substrate under aerobic or anoxic conditions). The modified ASM3 was tested against the results of batch experiments with the biomass originating from two full-scale SAS systems in Germany. The endogenous biomass was mixed with various readily biodegradable substrates (acetate, peptone, glucose and wastewater) and the utilisation of substrate (expresses as COD) and oxygen uptake rates (OURs) were measured during the experiments. In general, model predictions fitted to the experimental data, but a considerable number of kinetic (5) and stoichiometric (2) parameters needed to be adjusted during model calibration. The simulation results revealed that storage was generally a dominating process compared to direct growth in terms of the adsorbed substrate utilisation. The contribution of storage ranged from 65-71% (Plant A) and 69-92% (Plant B).  相似文献   

7.
The aim of this study was to suggest a sensitivity analysis technique that can reliably predict effluent quality and minimize calibration efforts without being seriously affected by influent composition and parameter uncertainty in the activated sludge models No. 1 (ASM1) and No. 3 (ASM3) with a settling model. The parameter sensitivities for ASM1 and ASM3 were analyzed by three techniques such as SVM-Slope, RVM-SlopeMA, and RVM-AreaCRF. The settling model parameters were also considered. The selected highly sensitive parameters were estimated with a genetic algorithm, and the simulation results were compared as deltaEQ. For ASM1, the SVM-Slope technique proved to be an acceptable approach because it identified consistent sensitive parameter sets and presented smaller deltaEQ under every tested condition. For ASM3, no technique identified consistently sensitive parameters under different conditions. This phenomenon was regarded as the reflection of the high sensitivity of the ASM3 parameters. But it should be noted that the SVM-Slope technique presented reliable deltaEQ under every influent condition. Moreover, it was the simplest and easiest methodology for coding and quantification among those tested. Therefore, it was concluded that the SVM-Slope technique could be a reasonable approach for both ASM1 and ASM3.  相似文献   

8.
Extracelluar polymeric substances (EPSs) and soluble microbial products (SMPs) produced by microbial cultures involved in membrane biofouling have been widely investigated. A mathematical model of EPS and SMP formation and degradation was established based on the activated sludge model no. 1 (ASM1) and was applied to the membrane bioreactor sludge with different sludge retention times (SRTs). The unified theory that the distinct products from the EPS and SMP overlapped each other was integrated into the ASM1. Two components, five processes and eight parameters were newly added to set up the model. To increase the accuracy of model simulation, microbial kinetic parameters were determined by respirometry method and applied to the model instead of microbial kinetic constant offered in ASM1. From the respirometry result, both of heterotroph and autotroph showed different yield value, growth rate and decay rate from activated sludge. There was no significant effect of SRT on SMP production and the experimental results showed good agreement with the predicted values by the model simulation. With the developed unified EPS and SMP model, EPS and SMP production could be simulated so well that it can be applied for the membrane biofouling control.  相似文献   

9.
10.
11.
12.
The paper firstly presents an experimental study in a SBR pilot plant operated at 20 degrees C for nitrogen removal from a very small village wastewater. The plant consisted of only one reactor fed continuously throughout the day and aerated intermittently. Two tests with seven and three intermittences of mixing/aerated phases were conducted and verification of the results by simulations of the activated sludge model (ASM) was also carried out. The experimental results and simulation showed that a wide range of effluent N03-N can be obtained using different numbers of intermittences and values of the oxygen transfer coefficient (K(L)a). At the same time, the paper presents a design procedure for SBR processes based on an iterative process of simulations of the ASM model. After the selection of the cycle time, the mixing/aeration pattern, the initial volume, the solid retention time, and the duration of the phases, the simulation is undertaken, resulting in values for the effluent NH4-N and NO3-N, and the suspended solids before settling. Then, the latter parameters are verified to match the effluent and settling requirements. As an application of the design procedure, the effect on design and operation of different SBR configurations and of several operating conditions are analysed in three case studies.  相似文献   

13.
In-sewer transformation processes affect wastewater quality. Especially during dwf the transformation processes can exert a significant influence on wastewater quality. The transformation rates under aerobic conditions were estimated from an oxygen mass balance over a sewer reach. Oxygen probes were installed at the upstream and downstream end of the sewer reach. Moreover, 14 wastewater samples, taken at the downstream end of the sewer reach, were used to measure the oxygen uptake rate and the water quality parameters COD(total), COD(dissolved) and ammonium. The results show that the rate of fluctuations in COD concentrations in sewer systems is an order of magnitude higher than the aerobic transformation rate. Consequently, it is concluded that the aerobic transformations in sewer systems are generally not relevant with respect to the influent fluctuations for Dutch wastewater systems. However, in situations with very long aerobic transport times, the aerobic conversions can be significant. An ASM1 based model concept for transformations in sewer systems was used to study the applicability of the model for Dutch sewer conditions. The difference between the measured and simulated values was rather low for the range of upstream dissolved oxygen and COD(total), COD(dissolved) and COD(suspended) levels. Therefore, it is concluded that the ASM1 based sewer model properly describes the changes in dissolved oxygen level in an aerobic sewer reach.  相似文献   

14.
Data on the influence of feeding strategy on the performance of a fed-batch anaerobic sequencing reactor containing biomass immobilized on polyurethane foam and subjected to liquid phase circulation are presented and discussed. Six-hour cycles, temperature of 30 degrees C and circulation flow rate of 6 L/h were used. During each cycle 890 mL of synthetic domestic wastewater, with organic matter concentration of 500 mgCOD/L were fed to the reactor. The feeding strategies were implemented using fill times of 6 min (batch mode), 60, 120, 240 (fed-batch/batch mode) and 360 min (fed-batch mode). The system attained high efficiency and stability for all the operating conditions, and the substrate removal efficiency based on filtered samples presented a slight decrease from 85% to 81% when fill time was increased from 6 min to 360 min. A model considering a first-order kinetic equation was fitted to the experimental data. The apparent kinetic parameters for both batch and fed-batch phases were estimated, thus permitting evaluation of the influence of the feeding strategy on the reactor performance. The current system may be considered flexible in terms of the operating conditions it is subjected to.  相似文献   

15.
The application of an ASM1-based mathematical model for the modeling of autothermal thermophilic aerobic digestion is demonstrated. Based on former experimental results the original ASM1 was extended by the activation of facultative thermophiles from the feed sludge and a new component, the thermophilic biomass was introduced. The resulting model was calibrated in the temperature range of 20-60 degrees C. The temperature dependence of the growth and decay rates in the model is given in terms of the slightly modified Arrhenius and Topiwala-Sinclair equations. The capabilities of the calibrated model in realistic ATAD scenarios are demonstrated with a focus on autothermal properties of ATAD systems at different conditions.  相似文献   

16.
Many dairy industries have been using SBR wastewater treatment plants because they allow optimal working condition to be reached. However, to take advantage of SBR capabilities, strong process automation is needed. The aim of this work is to study the factors that influence SBR performance to improve modelling and control. To better understand the whole process we studied the kinetic modelling, the carbon removal mechanism and the relation between reactor performance, aerobic heterotrophic activity and bacterial population dynamics (by terminal restriction fragment length polymorphisms of 16S rDNA, T-RFLP). The heterotrophic activity values presented high variability during some periods; however, this was not reflected on the reactor performance. As sludge health indicator, the average activity in a period was better than individual values. Although all the carbon removal mechanisms are still unclear for this process, they seemed to be influenced by non-respirometric ways (storage, biosorption, accumulation, etc.). The variability of heterotrophic activity could be correlated with the bacterial population diversity over time. Despite the high variability of the activity, a simple kinetic model (pseudo ASM1) based on apparent constant parameters was developed and calibrated. Such modellisation provided a good tool for control purposes.  相似文献   

17.
活性污泥工艺模型在计算机模拟中的建立与应用   总被引:3,自引:0,他引:3  
张发根  刘俊新  隋军 《给水排水》2006,32(9):94-100
利用计算机技术模拟活性污泥生化过程是分析研究污水处理工艺的有效手段之一,模拟的有效性取决于采用的动力学模型、工艺模型、沉淀模拟以及模拟计算中的数学分析方法。其中工艺模型反映了工艺特性,是真实工艺在模拟过程中的再现。根据水力学及运行特征,可将现有主要工艺分为单池间歇式、多池间歇式、单向连续式和交替连续式。运用ASM2D动力学模型,对某污水处理厂的UNITANK工艺进行模拟,结果表明,选择的动力学模型和工艺模型是合适的。  相似文献   

18.
19.
Three full-scale municipal sequential batch reactor (SBR) wastewater treatment plants (WWTPs) were investigated by dynamic simulation studies using ASM1. All three WWTPs showed similar kinetic and stoichiometric conditions in the SBR population behaviour after calibration of the models. The simulation results detected only a discrepancy to the ammonia online data during and shortly after shock loading under anoxic and anaerobic conditions that so far could not be adjusted by the ASM1 model. However, these differences did not severely affect the quality of the simulations nor the effluent flows. Additionally, in all cases a dynamic alpha factor curve occurred during the aeration phases that was verified by further oxygen transfer measurements. This might reveal new aspects for the process control, design and simulation of SBR WWTPs. A short lag phase was detected in many cases at the beginning of the first aeration phase.  相似文献   

20.
The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号