首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tribology of small inorganic nanoparticles in suspension in a liquid lubricant is often impaired because these particles agglomerate even when organic dispersants are used. In this paper we use lateral force microscopy to study the deformation mechanism and dissipation under traction of two extreme configurations (1) a large MoS2 particle (~20 μm width) of about 1 μm height and (2) an agglomerate (~20 μm width), constituting 50 nm MoS2 crystallites, of about 1 μm height. The agglomerate records a friction coefficient which is about 5–7 times that of monolithic particle. The paper examines the mechanisms of material removal for both the particles using continuum modeling and microscopy and infers that while the agglomerate response to traction can be accounted for by the bulk mechanical properties of the material, intralayer and interlayer basal planar slips determine the friction and wear of monolithic particles. The results provide a rationale for selection of layered particles, for suspension in liquid lubricants.  相似文献   

2.
Seed-assisted solution synthesis of hollow IF-MoS2 nanoparticles allows independent control of particles size and MoS2 slabs crystallinity. Variations of the reaction mixture composition influence the particle size in the range 50–150 nm. As demonstrated by Rietvelt refinement of the X-ray diffraction patterns, the sulfide crystallinity depends only on the post-treatment temperature (350–750 °C) and not on the particle size. The tribological properties of new MoS2 nanoparticles prepared by seed-assisted solution technique were investigated and showed a strong decrease in the friction coefficient and wear compared with base oil. Small particles of 50–60-nm size showed the best results. The particle size above 100 nm is deleterious for the lubrication properties since it hinders particles penetration into the contact zone. MoS2 slabs crystallinity had lesser influence on the lubrication efficiency. However, less-crystallized samples treated at 350 °C showed better lubrication, apparently because of easier exfoliation of the individual MoS2 slabs, leading to more efficient formation of tribofilm.  相似文献   

3.
O. O. Ajayi  K. C. Ludema 《Wear》1990,140(2):191-206
The formation of transfer film and the consequent effects on the friction and wear behavior of ceramic materials during repeat sliding contact were studied. This was done using four structural ceramics, namely silicon nitride, silicon carbide, alumina and zirconia, with a cylinder-on-flat test configuration.

The transfer film consists of reattached fine wear debris particles, the film, whenever formed, is strongly attached, enough to resist being wiped off by the slider. Calculations suggest that the fine particles are attached primarily by van der Waals forces and to a lesser extent by electrostatic attractive forces. As a consequence, the formation of transfer film leads to a decrease in the wear rate because of the ‘protecting’ role of the film. The presence of the film at the contact interface also results in high friction. The presence of a liquid environment and/or surface active species reduces the particle adhesive forces and hence can inhibit the formation of a transfer film.  相似文献   


4.
The silane coupling agent γ-aminopropyl triethoxysilane (APTS) and polyethylene oxide (PEO) are proposed to modify the SiO2 abrasive particles for final polishing of silicon wafers. The effects of the modified silica abrasive particles on nanosized particle deposition, roughness, and removal rate of the silicon wafer are explored in detail. PEO is proved to be a potential modifying agent for controlling deposition of large particles (~410 nm diameter), leading to low roughness (Ra = 0.097 nm), and APTS is found to be effective in controlling deposition of both large and small particles (~410 and ~200 nm diameter, respectively), resulting in lower roughness (Ra = 0.054 nm).  相似文献   

5.
Diffusion bonding of high-carbon steel was carried out in vacuum brazing furnace at temperature 900–1,050 °C for 0.5 h under uniaxial load using Ni foil interlayer. Microstructure of assemblies was studied along with effect of diffusion of chemical species in reaction zone and mechanical properties. Microstructure of substrate was changed from martensite to austenite at bonding temperature and subsequently to ferrite–pearlite during cooling to ambient temperature. Diffusion zone did not exhibit formation of any intermetallic compounds. Bond strength was governed by degree of solid solution hardening and contact area of mating surfaces depending on joining parameters. In this respect, maximum ultimate strength of ~532 MPa was obtained along with shear strength of ~792 MPa for the joint processed at 1,050 °C, which was higher than literature reports on martensitic steel.  相似文献   

6.
Microdimples with different diameters and Cr/graphite-like carbon (GLC) films were fabricated on silicon by laser surface texturing and magnetron sputtering technology, respectively. The texturing effects on the microstructures and tribological performance in seawater were comparatively investigated. The results showed that both the friction coefficients and wear rates in seawater decreased with an increase in dimple diameter in the lower range and then increased with a further increase in diameter. The Cr/GLC film with an appropriate diameter of dimples (1.5 µm) is effective in enhancing the tribological properties due to entrapment of wear particles and seawater in the dimples. In addition, the roughness and graphitization contact area have obvious effects on the wear resistance. If the surface roughness is too high, the graphitization contact area will decrease, and the ratio of minimum aqueous film thickness to the surface roughness is so small that the load is almost totally borne by the boundary film.  相似文献   

7.
More durable, low-friction self-lubricating materials in modern industry are greatly needed for tribological systems. The current paper presents the tribological performance of TiAl matrix self-lubricating composites (TSC) containing MoS2, hexagonal BN and Ti3SiC2 designated as MhT against GCr15 steel counterface under several sliding speeds from 0.2 to 0.8 m s?1 and applied loads from 6 to 12 N. The results suggested that MhT played an important role in decreasing friction coefficients and wear rates. The covering percentage of transfer layers on worn surfaces varied with the changing of sliding speeds and applied loads, hence resulting in the distinct friction and wear characteristics of TSC. TSC containing 10 wt% MhT exhibited the best excellent tribological performance at 10 N–0.8 m s?1, which could be due to the formation of the best compaction and largest coverage of transfer layer on the worn surfaces.  相似文献   

8.
A study highlighting the aspect of the generation of aerosol wear particles during abrasion is presented. The substrate chosen is a masonry brick which is reinforced with TiO2 nanoparticles. This is done using a pin on plate arrangement. The material removal mechanism via fracturing is first understood. The parameter chosen for the study is the normal load. The formed aerosols are then characterized by their number concentration, particle size distribution, individual particle shape, size and chemical composition. Having irregular shapes, the aerosol wear particles have unimodal size distributions with 5–7 % (in mass) of Ti content. The size mode increases with the increase in normal load. However, at higher normal loads, while there is an unexpected increase in the wear mass, the maximum concentration of the aerosol particles saturates. During the whole study, no free nanoparticles of TiO2 were found.  相似文献   

9.
The effects of normal load and velocity on the friction and wear behavior of single-phase Fe2B bulk have been investigated by optical microscopy, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Results indicate that the friction coefficient and wear rate both decrease at first and then increase with increasing load and velocity, respectively. Attributed to the formation of a lamellar film on the Fe2B surface, the lowest friction coefficient and wear rate are obtained at a velocity of 0.2 m/s under a load of 12 N. The dynamic friction coefficients under loads of 4 and 12 N are around 0.8 in the initial steady stage and then decrease to about 0.6, whereas the friction coefficient at 20 N shows no obvious change and remains around 0.82. The lubricating film consisting of Fe2O3, B2O3, SiO2, and H3BO3 reduces the friction coefficient at 0.2 m/s under a load of 12 N.  相似文献   

10.
Because of their superior physical and chemical stability, carbon microspheres have been identified as promising lubricating additives. In this paper, hard carbon microspheres with diameters ranging from approximately 130 to 250 nm were prepared through a hydrothermal method using glucose as the carbon source. The as-prepared carbon microspheres were characterized by a series of complementary techniques including field emission scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction. It was found that the as-prepared carbon microspheres were spherical with graphitic structure. The effects of applied load, concentration, and particle size of the carbon microspheres as water-based lubricating additives against an opposing smooth silicon surface were systematically studied using a UMT tribometer and a 3D noncontact interferometric microscope. The results showed that carbon microspheres can effectively reduce friction and wear on a smooth silicon surface and the optimal performance was obtained at an applied load of 100 mN, a concentration of carbon microspheres of 0.1 wt% and an average particle size of 200 nm. The superior performance of carbon microspheres as water-based lubricating additives was attributed to having the particles dispersed as individual particles (as opposed to clusters) and also having sufficient physically and chemically stable particles within the contact region which allowed for a rolling friction mechanism to reduce friction.  相似文献   

11.
Friction and wear behaviors of hydrogenated fullerene-like (H-FLC) carbon films sliding against Si3N4 ceramic balls were performed at different contact loads from 1 to 20 N on a reciprocating sliding tribometer in air. It was found that the films exhibited non-Amontonian friction behaviors, the coefficient of friction (COF) decreased with normal contact load increasing: the COF was ~0.112 at 1 N contact load, and deceased to ultralow value (~0.009) at 20 N load. The main mechanism responsible for low friction and wear under varying contact pressure is governed by hydrogenated carbon transfer film that formed and resided at the sliding interfaces. In addition, the unique fullerene-like structures induce well elastic property of the H-FLC films (elastic recovery 78%), which benefits the high load tolerance and induces the low wear rate in air condition. For the film with an ultralow COF of 0.009 tested under 20 N load in air, time of flight secondary ion mass spectrometry (ToF-SIMS) signals collected inside and outside the wear tracks indicated the presence of C2H3 and C2H5 fragments after tribological tests on the H-FLC films surface. We think that the tribochemistry and elastic property of the H-FLC films is responsible for the observed friction behaviors, the high load tolerance, and chemical inertness of hydrogenated carbon-containing transfer films instead of the graphitization of transfer films is responsible for the steady-state low coefficients of friction, wear, and interfacial shear stress.  相似文献   

12.
In this paper, the effect of SiO2 particle size on friction mechanisms was investigated. Five different size scales (10 µm, 80 µm, 180–700 µm, 700 µm–2.0 mm, and 3.0 mm) were selected to prepare non-commercial friction materials. Friction testing for these materials was conducted on a pad-on-disc-type friction tester under certain conditions. In order to identify the friction behaviour during the friction process, worn surfaces after test were observed using SEM. Results revealed that the friction mechanisms changed with particle size. In addition, a simple physical model was developed to provide quantitative analysis for the friction coefficient of materials containing large particles. Further, the predictability of this model was investigated across a range of formulations and controlling factors.  相似文献   

13.
王超  孔俊超  王伟 《机械工程学报》2018,54(21):113-119
软三体颗粒润滑是利用大量松散的固体软颗粒在界面中的承载和剪切行为实现特殊环境下界面的减摩,因此研究软颗粒介质摩擦界面在剪切过程中的受力情况,对软三体颗粒润滑机理的分析以及润滑装置的设计都具有重要意义。研究中将第三体颗粒类比为流体,基于雷诺方程、黏度方程、Greenwood和Williamson接触模型(G-W模型)等建立了含大颗粒粗糙界面的混合润滑模型。该模型中摩擦副的总载荷及总摩擦力由流体、微凸体和大颗粒三部分共同构成。通过采用有限差分法对上述物理模型进行求解分析,探究膜厚比、第三体大颗粒的质量浓度、粒径以及试件的表面形貌、弹性模量对三体接触界面的承载和摩擦力的影响情况,进而分析大颗粒粒径和接触表面粗糙度耦合时软三体接触界面的力学性能。基于对所构建的软三体接触界面混合润滑模型的研究可知:合理选择大颗粒质量浓度、粒径以及试件的表面形貌、弹性模量有助于提高承载、减小摩擦力,使得软三体颗粒流具有更好的减摩润滑性能。  相似文献   

14.
In this study, the synthesis of thin films of Mg phosphorus doped tungsten bronzes (MgPTB; MgHPW12O40·29H2O) by the self‐assembly of nano‐structured particles of MgPTB obtained using the ultrasonic spray pyrolysis method was investigated. As the precursor, MgPTB, prepared by the ionic exchange method, was used. Nano‐structured particles of MgPTB were obtained using the ultrasonic spray pyrolysis method. The nano‐structure of the particles used as the building blocks in the MgPTB thin film were investigated experimentally and theoretically, applying the model given in this article. The obtained data for the mean particle size and their size distribution show a high degree of agreement. These previously tailored particles used for the preparation of thin films during the next synthesis step, by their self‐assembly over slow deposition on a silica glass substrate, show how it is possible to create thin MgPTB films under advance projected conditions of the applied physical fields with a fully determined nanostructure of their building block particles, with a relatively small roughness and unique physical properties.  相似文献   

15.
Lithium stearate soap and layered MoS2 nanoparticles encapsulated in lithium stearate soap are prepared in the laboratory, and their lubricating properties are compared with respect to the particle and particle concentration. The tribotracks after friction test was investigated with Raman Spectroscopy, scanning electron microscopy (SEM) and 3D optical profilometry to understand the action mechanism. The status of the soap particles on a tribotrack changes with time, contact pressure and sliding speed. At low pressure and speed, individual solid undeformed soap particle stand proud of the surface and the topography shows marginal difference with sliding time. In these conditions, no frictional difference between the performance of grease with and without the nanoparticles is observed. Increasing the contact pressure and temperature (low speed and high speed) has a dramatic effect as the soap particles melt and the liquid soap flows over the track releasing the hitherto encapsulated nanoparticles. Consequently, the soap smears the track like a liquid, and the nanoparticles now come directly into the interface and are sheared to generate a low-friction tribofilm. At high particle concentration, the sliding time required for melting of the soap and release of MoS2 is reduced, and the tribofilm is more substantial and uniform consisting of smeared MoS2 and carboxylate soap as observed by SEM and 3D optical profilometry. A change in the Raman Spectra is observed with particle concentration, and this is related to morphology and microstructure of the tribofilm generated.  相似文献   

16.
Abrasive particle movement pattern is an important factor in estimating the wear rate of materials, especially, as it is closely related to the burring, buffing and polishing efficiency of the abrasive flow machining (AFM) process. There are generally two kinds of particle movement patterns in the AFM process, i.e. sliding–rubbing and rolling. In mechanism, AFM grain–workpiece interaction is taking place in any one or a combination of the possible modes: elastic/plastic deformation by sliding–rubbing grain movement; elastic/plastic deformation by rolling grain movement; chip formation (micro‐cutting) by rubbing grain movement; ridges formation by rubbing and rolling grain movement; and low‐cycle fatigue wear. Therefore, the machining efficiency of a machine part is predominantly dependent upon the particle movement patterns. In this paper, normal load, particle size and hardness of machine parts were investigated to understand the involved parameters of particle movement patterns and propose a computer statistic prediction of particle movement patterns. It has been found that there are two cases. In case of large‐size particles, the ratio of rolling particles is increased with increasing normal load. For small‐size particles, the ratio of grooving particles is increased with increasing normal load and vice versa. When normal load is light, the particle size cannot usually give an effect on movement patterns. That influence will be predominant under heavy normal load. Most of the particles will tend to groove when the particle size is below a certain value. Hardness of the material and their hardness difference for tribological pairs are other important monitors in predicting particle movement patterns. In this research, increasing hardness of materials results in more rolling particles, which results in much less cutting particles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

The influence of diamond-like carbon (DLC) coating positions—coated flat, coated cylinder, and self-mated coated surface tribopairs—on the fretting behaviors of Ti-6Al-4V were investigated using a fretting wear test rig with a cylinder-on-flat contact. The results indicated that, for tests without coating (Ti-6Al-4V–Ti-6Al-4V contact), the friction (Qmax/P) was high (0.8–1.2), wear volumes were large (0.08–0.1?mm3) under a large displacement amplitude of ±40 µm and small (close to 0) under a small displacement amplitude of ±20 µm, and the wear debris was composed of Ti-6Al-4V flakes and oxidized particles. For tests with the DLC coating, under low load conditions, the DLC coating was not removed or was only partially removed, Qmax/P was low (≤0.2), and the wear volumes were small. Under high load conditions, the coating was entirely removed, Qmax/P was high (0.6–0.8), and the wear volumes were similar to those in tests without coating. The wear debris was composed of DLC particles, Ti-6Al-4V flakes, and oxidized particles. The DLC coating was damaged more severely when deposited on a flat surface than when deposited on a cylindrical surface. The DLC coating was damaged more severely when sliding against a DLC-coated countersurface than when sliding against the Ti-6Al-4V alloy.  相似文献   

18.
H. Kato   《Tribology International》2008,41(8):735-742
This study is the first to show a quantitative condition required for the establishment of severe–mild wear transition with sliding distance, by studying the effects of supply of Fe2O3 particles onto rubbing steel surfaces on the transition and oxide film formation process. The supply of fine Fe2O3 particles was found to accelerate the wear transition, and the sliding distance at which the transition occurs was found to increase with particle diameter and applied load. Oxide films are produced on the rubbing surfaces by sintering of the supplied Fe2O3 oxide particles. At the severe–mild wear transition, the relative area of oxide films is the same for all diameters of supplied Fe2O3 particles. This finding suggests that the transition occurs when the relative area of oxide films reaches a specific value, which is proportional to the area of real contact.  相似文献   

19.
Various solid lubricant particles have been experimentally evaluated as possible additives to oils. However, information in terms of a direct comparison of their tribological properties is still missing. In this study, we have compared the tribological properties of seven different solid lubricant micro- and nanoparticles as additives in polyalphaolefin (PAO) oil: MoS2 nanotubes, MoS2 platelets (2 and 10 μm), WS2 nanotubes, WS2 fullerene-like nanoparticles, graphite platelets (20 μm) and multi-walled carbon nanotubes. The experiments were performed in the boundary lubrication regime under a contact pressure of 1 GPa (Hertz, max) using a ball-on-disc tribotester. In general, the particles significantly decreased the friction and wear compared to the base PAO oil. We found that it was the material of the particles that largely determined their tribological performance. The effect of the size of the particles was much less important, and the morphology (shape) of the particles had little or no influence. We have also investigated the effect of ultrasonication during suspension preparation on particle damage and found that the solid lubricant particles were not notably affected, except the MoS2 and WS2 nanotubes, which became somewhat shorter.  相似文献   

20.
Double-glow plasma (DGP) coatings are recommended for metallic components to mitigate the damage induced by complex working conditions in previous studies. In this paper, Nb-rich (Cr–Nb4) and Cr-rich (Cr4–Nb) -alloyed layers were formed onto the Ti–Al substrate via a DGP process to enhance its wear resistance. Scratch and Nano-indentation tests were used to evaluate the mechanical properties of the coatings. The tribological behaviour of the coatings were investigated using a pin-on-disc tribometer by rubbing against the GCr15 ball. Results from surface analysis techniques showed that the coatings mainly comprised Cr, Nb and Cr2–Nb phases, and were well bonded to the substrate. The hardness of the Cr–Nb4 coating was 11.61GPa and the Cr4–Nb coating was 9.66 GPa which all higher than that of the uncoated Ti–Al which was 5.65 GPa. However, the critical load of the Cr4–Nb coating ~21.64 was higher than that of the Cr–Nb4 coating ~17.6. And the specific wear rate of Cr–Nb4 coating, Cr4–Nb coating and uncoated Ti–Al were 3.54 × 10?4, 0.01 × 10?4 and 1.53 × 10?4mm3 N?1 m?1, respectively. The low-wear mechanism of the coatings is discussed in detail in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号