首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kitting and line stocking systems are common alternatives for component storage in assembly environments. Despite the need for knowledge about when and where each system would be applicable in industry, research on the choice of kitting versus line stocking systems in industry is quite sparse. This paper identifies a number of research issues that might influence this system choice decision based on an analysis of the kitting operations and the potential move to line stocking at an electronics assembly company. Research questions are presented in the areas of product characteristics (volume, variety, and size), storage and material handling, production control, performance impact, and implementation. The issues identified here highlight factors that might influence the choice between kitting and line stocking, and present a rich array of research opportunities in a number of relevant areas.  相似文献   

2.
    
This paper explores the impact of parts features, i.e. unit size and cost, as well as scenario variables on the total delivery cost of materials to assembly lines workstations, according to different materials feeding processes (kitting, line storage and just-in-time delivery). After building cost models based on parts features explicitation, a sensitivity and parametric analysis is carried out in order to justify the cost-effectiveness of each feeding policy and understand whether economic break-even points exist among available feeding alternatives on the basis of the values assumed by relevant attributes of parts. This allows to map areas where each feeding policy is more convenient and also allows a quick method to choose the best feeding policy for each part on an economic basis.  相似文献   

3.
To effectively react and meet the current ever growing demand for individualised motor vehicles, built to customer specific requirements, automotive industry has accelerated its transition towards mass-customisation. As a result, the number of new model introductions has drastically increased over the past three decades. To cope with this intensified customisation, the current automotive assembly platforms are designed to assemble a wide range of relatively different models, and are turned into mixed-model assembly lines (MMALs). This implies that the set of tasks to be performed on each workstation is no longer stable but varies highly with the model-mix. As a consequence, the manufacturing complexity increases at the workstations and throughout the whole assembly system. This paper proposes a method to monitor manufacturing complexity at each workstation while the MMAL is being balanced. An entropy-based quantitative measure of complexity, which incorporates the variability of each task duration, is developed. This measure is used to monitor the manufacturing complexity level at each workstation. An integrated mixed-line balancing and complexity monitoring heuristic is proposed, to determine workload balance solutions, in which manufacturing complexity is levelled throughout the workstations composing the line. This procedure is tested on a real data-set provided by an automotive manufacturer. The results are reported and thoroughly discussed.  相似文献   

4.
The status of material delivery of an automobile general assembly line is analyzed, and the technique to achieve the real-time tracking of assembly status information is proposed based on RFID( Radio Frequency Identification). Thus the consumption of line-side buffer is obtained dynamically, then the type and quantity of needed material are fed back to the subsystem of material handling; the algorithm for determining the best time departure time of delivery driver based on minimizing of total time penalty function is proposed. This approach makes the material amount of a single delivery trip maximized and improves the efficiency of delivery drivers significantly in the case of does not affect the assembly line normal throughput. Additionally, although this dynamic material handling method is developed for the automobile assembly plant, it should be pointed out that this method is also applicable to other mixed model assembly plants such as electronics, semiconductor and aerospace industry.  相似文献   

5.
    
The present paper focuses on parts presentation in manual assembly. Its aim is to determine how kitting affects the time spent by the assembler fetching parts and, more specifically, what is the impact of the proportion of parts included in the kit. The present paper is based on four case studies of automobile assembly, in which parts presentation by kitting is compared with parts presentation in component racks. In the case studies, kitting enabled shorter distances between parts presentation and assembly object and thereby a potential reduction in the time spent fetching parts. However, when only a proportion of parts were kitted, the time spent fetching parts was not always reduced, in spite of this potential. The present paper finds that when deciding which parts should be kitted, attention should be paid to how and in what order assembly operations are performed.  相似文献   

6.
    
Two-sided assembly lines are usually designed to produce large-sized products such as automobiles, trucks and buses. In this type of production line, both left-side and right-side of the line are used. In parallel assembly lines, one or more product types are produced on two or more assembly lines located in parallel to each other. Both production lines have several serious practical advantages. For this purpose, in this paper, two or more two-sided assembly lines located in parallel to each other are considered and a tabu search algorithm which combines the advantages of both types of production lines is developed. To assess the effectiveness of the proposed algorithm, a set of test problems are solved. The proposed algorithm is illustrated with two examples, and some computational properties of the algorithm are given.  相似文献   

7.
介绍一种由新型材料制作适用于中小型零件加工、装配和搬运的组合式物料装置及其在汽车零部件生产中的应用。用该材料设计制作的组合式物为装置具有轻便、灵活、可重复使用等特点,能够有效地提高生产率和降低工人的劳动强度。  相似文献   

8.
    
A mixed-model assembly line is a type of production line where a variety of product models similar in product characteristics are produced. As a consequence of introducing the just-in-time (JIT) production principle, it has been recognised that a U-shaped assembly line system offers several benefits over the traditional straight line system. This paper proposes a new evolutionary approach to deal with workload balancing problems in mixed-model U-shaped lines. The proposed method is based on the multi-decision of an amelioration structure to improve a variation of the workload. This paper considers both the traditional straight line system and the U-shaped assembly line, and is thus an unbiased examination of line efficiency. The performance criteria considered are the number of workstations (the line efficiency) and the variation of workload, simultaneously. The results of experiments enhanced the decision process during multi-model assembly line system production; thus, it is therefore suitable for the augmentation of line efficiency in workstation integration and simultaneously enhancement of the variation of the workload. A case study is examined as a validity check in collaboration with a manufacturing company.  相似文献   

9.
In this paper, a novel stochastic two-sided U-type assembly line balancing (STUALB) procedure, an algorithm based on the genetic algorithm and a heuristic priority rule-based procedure to solve STUALB problem are proposed. With this new proposed assembly line design, all advantages of both two-sided assembly lines and U-type assembly lines are combined. Due to the variability of the real-life conditions, stochastic task times are also considered in the study. The proposed approach aims to minimise the number of positions (i.e. the U-type assembly line length) as the primary objective and to minimise the number of stations (i.e. the number of operators) as a secondary objective for a given cycle time. An example problem is solved to illustrate the proposed approach. In order to evaluate the efficiency of the proposed algorithm, test problems taken from the literature are used. The experimental results show that the proposed approach performs well.  相似文献   

10.
    
The mixed-model sequencing problem is to sequence different product models launched down an assembly line, so that work overload at the stations induced by direct succession of multiple labour-intensive models is avoided. As a concept of clearing overload situations, especially applied by Western automobile producers, a team of cross-trained utility workers stands by to support the regular workforce. Existing research assumes that regular and utility workers assemble side-by-side in an overload situation, so that the processing speed is doubled and the workpiece can be finished inside a station's boundaries. However, in many real-world assembly lines the application of utility workers is organised completely differently. Whenever it is foreseeable that a work overload will occur in a production cycle, a utility worker takes over to exclusively execute work, whereas the regular worker omits the respective cycle and starts processing the successive workpiece as soon as possible. This study investigates this more realistic sequencing problem and presents a binary linear program along with a complexity proof. Different exact and heuristic solution procedures are then introduced and tested. Additional experiments show that the new model is preferable from an economic point of view whenever utility work causes considerable setup activities, for example walking to the respective station.  相似文献   

11.
    
As a consequence of increasing interests in customised products, mixed-model lines have become the most significant components of today’s manufacturing systems to meet surging consumer demand. Also, U-shaped assembly lines have been shown as the intelligent way of producing homogeneous products in large quantities by reducing the workforce need thanks to the crossover workstations. As an innovative idea, we address the mixed-model parallel U-shaped assembly line design which combines the flexibility of mixed-model lines with the efficiency of U-shaped lines and parallel lines. The multi-line stations utilised in between two adjacent lines provide extra efficiency with the opportunity of assigning tasks into workstations in different combinations. The new line configuration is defined and characterised in details and its advantages are explained. A heuristic solution approach is proposed for solving the problem. The proposed approach considers the model sequences on the lines and seeks efficient balancing solutions for their different combinations. An explanatory example is also provided to show the sophisticated structure of the studied problem and explain the running mechanism of the proposed approach. The results of the experimental tests and their statistical analysis indicated that the proposed line design requires fewer number of workstations in comparison with independently balanced mixed-model U-lines.  相似文献   

12.
In the paper, we study a flexible assembly line design problem with equipment decisions. We assume the task times and equipment costs are correlated in the sense that for all tasks the cheaper equipment gives no smaller task time. Given the cycle time and number of workstations we aim to find the assignment of tasks and equipment to the workstations so as to minimise the total equipment cost. We develop a branch and bound algorithm that uses powerful lower bounds and reduction mechanisms. Our computational experiments have revealed that our algorithm can solve large-sized problem instances in reasonable solution times.  相似文献   

13.
To effectively respond to the changing market demands, a manufacturer should produce variety of products with small lots. Thus, multiple products (models) are assembled simultaneously on a same line. However, it is very challenging to balance such an assembly line. This paper conducts a study on balancing a mixed-model assembly line of Type E. To solve this problem, a coloured-timed Petri net model is developed to describe the task precedence relationship. Also, the optimisation problem is formulated as a mathematical programming model. Then, with the models, a two-stage heuristic algorithm is proposed to solve the problem. At the first stage, based on the Petri net model, a P-invariant algorithm (PA) is presented to minimise the number of workstations. At the second stage, a heuristic is proposed to further minimise the cycle time by combining the PA with a binary search algorithm (BSA). Performance of the proposed method is evaluated by an illustrative example and numerical experiments. It is shown that it works well in terms of both solution accuracy and computational efficiency for large size problems.  相似文献   

14.
    
This paper considers the material supply problem for aircraft moving assembly lines. Distinguished from general automobile assembly lines, multiple parallel jobs are assembled concurrently and durations of assembly jobs are quite long, thus amounts of materials are orderly stored at the line-side space at the same time. In addition, the line-side space should be reused in the time dimension. With these characteristics, decisions on line-side storage of materials were introduced on the basis of material batching and tow-trains scheduling problems. An integrated decision–making mathematical model with the objective of minimising the number of deliveries was established. A hybrid endocrine-immune algorithm (HEIA) was proposed to jointly make decisions on the delivery batch, delivery time and storage positions of each job’s materials. Numerical experiments with the real-world data and randomly generated instances validate the effectiveness and efficiency of HEIA.  相似文献   

15.
    
In this paper, a simulated annealing approach is developed for the parallel mixed-model assembly line balancing and model sequencing (PMMAL/BS) problem which is an extension of the parallel assembly line balancing (PALB) problem introduced by Gökçen et al. (2006 Gökçen, H and A?pak, K. 2006. A goal programming approach to simple U-line balancing problem. European Journal of Operational Research, 171(2): 577585. [Crossref], [Web of Science ®] [Google Scholar]). In PALB, the aim is to balance more than one assembly line together. Balancing of the lines simultaneously with a common resource is very important in terms of resource minimisation. The proposed approach maximises the line efficiency and distributes the workloads smoothly across stations. The proposed approach is illustrated with two numerical examples and its performance is tested on a set of test problems. The computational results show that the proposed approach is very effective for PMMAL/BS.  相似文献   

16.
    
This paper proposes a control theoretical modelling to study dynamic behaviour of a mixed-model assembly line. First, an open-loop model is developed for the system, then examined via different conveyor’s velocity values. It is realised that the performance of the system is very sensitive to the velocity; therefore, a closed-loop (CL) model is developed taking feedback from the system. By the use of proportional-integral-derivative (PID) controller and SIMULINK, some interesting results are obtained applying CL model: regardless of the sequence of the products in the line, the total work-overload and idleness always equals to zero. Moreover, less working area within the workstation is required. Based on the statistical analysis, it is found that no significant increase in makespan is imposed by CL model. It is also shown that PID controller is robust not only to the disturbances of the velocity, also to the uncertainties in the assembly operation times. These results are supported by many numerical experiments dealing with different test problems, line configurations and sequences. Finally, using a discrete event simulation model, the proposed approach is applied into a seru production mode. Simulation results show that the feedback PID controller can deal with real-world assembly line problems, successfully.  相似文献   

17.
    
Mixed-model assembly lines are widely used in a range of production settings, such as the final assembly of the automotive and electronics industries, where they are applied to mass-produce standardised commodities. One of the greatest challenges when installing and reconfiguring these lines is the vast product variety modern mixed-model assembly lines have to cope with. Traditionally, product variety is bypassed during mid-term assembly line balancing by applying a joint precedence graph, which represents an (artificial) average model and serves as the input data for a single model assembly line balancing procedure. However, this procedure might lead to considerable variations in the station times, so that serious sequencing problems emerge and work overload threatens. To avoid these difficulties, different extensions of assembly line balancing for workload smoothing, i.e. horizontal balancing, have been introduced in the literature. This paper presents a multitude of known and yet unknown objectives for workload smoothing and systematically tests these measures in a comprehensive computational study. The results suggest that workload smoothing is an essential task in mixed-model assembly lines and that some (of the newly introduced) objectives are superior to others.  相似文献   

18.
In an effort to maintain or increase their market share and at the same time prevent costs from escalating, manufacturing organisations are increasingly using their current manufacturing system to produce custom output. As a consequence, the large number of product variants increases significantly the complexity of manufacturing systems, both for the operators as for the support services. This is especially true in automotive industry, where customisation is increasing at a rapid pace. To counter the ensuing loss of productivity, a more fundamental approach to dealing with this complexity in manufacturing processes is required. In order to investigate the impact of complexity on production performance, one must first delineate the concept and then identify as unambiguously as possible highly complex workstations. This article defines complexity at the workstation level and proposes a complexity measure for mixed-model assembly workstations. Based on data from several leading automotive companies from Belgium and Sweden, some statistical models are proposed to characterise workstations complexity. The models are described and their validity and accuracy are discussed.  相似文献   

19.
This paper assesses the hypothesis that plant build complexity impacts quality, suggests mechanisms to explain how complexity impacts quality, and offers countermeasures to mitigate this impact. We analyse automotive assembly data that supports the proposition that plant build complexity negatively impacts quality. In addition, this paper provides actual automotive assembly line work instructions and shows how they can be represented by the Gilbreths’ fundamental work elements and plant build complexity impacts these work elements. To highlight complexity's adverse impact on quality, we compare the actual work instructions at two automotive assembly line stations–one with very little complexity and one with extreme complexity. We list common automotive assembly quality lapses and describe how they can be caused or exacerbated by complexity. Finally the paper presents practical countermeasures to mitigate complexity's impact on quality. While based on the automotive industry, the lessons apply to all complex assembly lines.  相似文献   

20.
    
In this study, we consider balancing problems of one- and two-sided assembly lines with real-world constraints like task or machine incompatibilities. First, we study the one-sided assembly line balancing problem (ALBP) with a limited number of machine types per workstation. Using a genetic algorithm (GA), we find optimal results for real-world instances. A set of larger test cases is used to compare two well-established solution approaches, namely GA and tabu search (TS). Additionally, we apply a specific differential evolution algorithm (DE), which has recently been proposed for the considered ALBP. Our computational results show that DE is clearly dominated by GA. Furthermore, we show that GA outperforms TS in terms of computational time, if capacity constraints are tight. Given the algorithm’s computational performance as well as the fact that it can easily be adapted to additional constraints, we then use it to solve two-sided ALBP. Three types of constraints and two different objectives are considered. We outperform all previously published methods in terms of solution quality and computational time. Finally, we are the first to provide feasible test instances as well as benchmark results for fully constrained two-sided ALB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号