首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a real-time closed loop control dispatching heuristic (RCLC) algorithm is proposed to address the scheduling problem of parallel batch machines with incompatible job families, limited waiting time constraints, re-entrant flow and dynamic arrivals in the diffusion and oxidation areas of a semiconductor wafer fabrication system (SWFS), which is known to be strongly NP-hard. The basis of this algorithm is the information of lots in the buffer when the parallel batch machines are idle and available. In RCLC, if the number of any family lots is less than the maximum batch size, the dispatching heuristic can be seen as a pull–pull–push–push (P4) strategy; otherwise, a genetic algorithm (GA). A look-itself strategy, P4 strategy and GA can build a closed loop control system. The experiments are implemented on the Petri nets-based real-time scheduling simulation platform of SWFS, and demonstrate the effectiveness of our proposed method.  相似文献   

2.
为有效解决船舶分段的空间调度问题,提出了一种基于优先规则的求解算法。首先利用优先规则和禁忌搜索算法产生可行的分段调度序列,再采用一种启发式定位策略——最下最左填满策略对产生的调度序列进行解码,以评估调度序列的优劣。算法不断迭代,最终可得到近似最优解。对船厂的实际生产数据进行了实证分析,并与现有的算法进行了对比,验证了所提出的算法在空间调度问题上的有效性和优越性。  相似文献   

3.
This paper considers the problem of minimising makespan on a single batch processing machine with flexible periodic preventive maintenance. This problem combines two sub-problems, scheduling on a batch processing machine with jobs’ release dates considered and arranging the preventive maintenance activities on a batch processing machine. The preventive maintenance activities are flexible but the maximum continuous working time of the machine, which is allowed, is determined. A mathematical model for integrating flexible periodic preventive maintenance into batch processing machine problem is proposed, in which the grouping of jobs with incompatible job families, the starting time of batches and the preventive maintenance activities are optimised simultaneously. A method combining rules with the genetic algorithm is proposed to solve this model, in which a batching rule is proposed to group jobs with incompatible job families into batches and a modified genetic algorithm is proposed to schedule batches and arrange preventive maintenance activities. The computational results indicate the method is effective under practical problem sizes. In addition, the influences of jobs’ parameters on the performance of the method are analyzed, such as the number of jobs, the number of job families, jobs’ processing time and jobs’ release time.  相似文献   

4.
This paper addresses a real scheduling problem, namely, a complex flexible job-shop scheduling problem (FJSP) with special characteristics (flexible workdays, preemption and overlapping in operations), where the objective is to maximise a satisfaction criterion defined through goal programming. To allow for flexible workdays, the solution representation of the classical FJSP is extended to consider overtime decisions and a sequence of time-cell states, which is used to model resource capability. A new temporal-constraint-handling method is proposed to solve the problem of overlapping in operations in a flexible-workday environment. Three solution methods are proposed to solve this scheduling problem: a heuristic method based on priority rules, a goal-guided tabu search (GGTS) and an extended genetic algorithm (EGA). In the GGTS, the neighbourhood functions are defined based on elimination approaches, and five possible neighbourhood functions (N0???N1???N2???N3???N4) are presented. The effectiveness and efficiency of the three solution methods are verified using dedicated benchmark instances. Computational simulations and comparisons indicate that the proposed N4-based GGTS demonstrates performance competitive with that of the EGA and the GGTSs based on the other neighbourhood functions (N0, N1, N2 and N3) for solving the scheduling problem.  相似文献   

5.
This paper investigates a new scheduling problem of multiple orders per job (MOJ) in a three-machine flowshop consisting of an item-processing machine, a lot-processing machine and a batch-processing machine, for a semiconductor manufacturing operation that must form a layer on the wafers. The three-machine flowshop MOJ scheduling problem deals with sequencing customer orders, assigning orders to jobs, and then combining the formed jobs into batches. Genetic algorithms are presented for this scheduling problem to minimise the total weighted tardiness (TWT), in the presence of non-zero order ready times, different order due dates, different order weights and unequal order sizes. Extensive experiments were performed to compare the proposed genetic algorithm (GA)-based approach with the benchmark heuristics presented in previous studies. The experiments led to the conclusions that the GA-based approach is significantly superior over other heuristics in terms of TWT and can find near-optimal solutions in an acceptable amount of computation time.  相似文献   

6.
In real scheduling problems, unexpected changes may occur frequently such as changes in task features. These changes cause deviation from primary scheduling. In this article, a heuristic model, inspired from Artificial Bee Colony algorithm, is proposed for a dynamic flexible job-shop scheduling (DFJSP) problem. This problem consists of n jobs that should be processed by m machines and the processing time of jobs deviates from estimated times. The objective is near-optimal scheduling after any change in tasks in order to minimise the maximal completion time (Makespan). In the proposed model, first, scheduling is done according to the estimated processing times and then re-scheduling is performed after determining the exact ones considering machine set-up. In order to evaluate the performance of the proposed model, some numerical experiments are designed in small, medium and large sizes in different levels of changes in processing times and statistical results illustrate the efficiency of the proposed algorithm.  相似文献   

7.
Traditional scheduling methods can only arrange the operations on corresponding machines with appropriate sequences under pre-defined environments. This means that traditional scheduling methods require that all parameters to be determined before scheduling. However, real manufacturing systems often encounter many uncertain events. These will change the status of manufacturing systems. These may cause the original schedule to no longer be optimal or even to be infeasible. Traditional scheduling methods, however, cannot cope with these cases. New scheduling methods are needed. Among these new methods, one method ‘reverse scheduling’ has attracted more and more attentions. This paper focuses on the single-machine reverse scheduling problem and designs a modified genetic algorithm with a local search (MLGA) to solve it. To improve the performance of MLGA, efficient encoding, offspring update mechanism and a local search have been employed and developed. To verify the feasibility and effectiveness of the proposed MLGA, 27 instances have been conducted and results have been compared with existing methods. The results show that the MLGA has achieved satisfactory improvement. This approach also has been applied to solve a real-world scheduling problem from one shipbuilding industry. The results show that the MLGA can bring some benefits.  相似文献   

8.
Scheduling is an important aspect in the overall control of a flexible manufacturing system. The research presented focuses on production scheduling of jobs within a flexible manufacturing cell (FMC)–one type of flexible manufacturing system. Due to the complexity of the FMC scheduling problem, a 0–1 mixed-integer linear programming (MILP) model is formulated for M machines and N jobs with alternative routings. Although small instances of the problem can be solved optimally with MILP models, a two-stage Tabu Search (TS2 ) algorithm that minimises the manufacturing makespan (MS) is proposed to solve medium-to-large-scale problems more efficiently. During Stage I (construction phase), two heuristics are utilised to generate an initial feasible sequence and an initial MS solution. In Stage II (improvement phase), the acquired initial solutions from Stage I are combined with a Tabu Search meta-heuristic procedure that provides improved MS solutions. The TS2 algorithm provides tremendous savings in computational time for medium/large-sized multi-machine FMC problems.  相似文献   

9.
We examine cyclic scheduling of single-armed and dual-armed cluster tools that concurrently process two wafer types by sharing a process module (PM). Because a PM is shared by two different wafers, the backward and swap sequences, which are prevalently used for single-armed and dual-armed tools without such complexity, respectively, are not effective. We therefore propose new sequences, called alternating backward and alternating swap sequences, for steady cycles of single-armed and dual-armed tools, respectively. We then develop optimality conditions for which the proposed sequences achieve the minimum cycle times in a fundamental cycle, and show that the optimality conditions hold for most practical cases. We also develop a condition for which a shared PM becomes the bottleneck and hence the PM sharing increases the cycle time. For general cycles, we propose heuristic scheduling methods that combine both the alternating backward (or swap) sequence and the conventional backward (or swap) sequence. Finally, we experimentally verify the efficiency and effectiveness of the proposed algorithm for dual-armed cluster tools.  相似文献   

10.
为求解含不一致任务重量的同型熔炼炉批调度问题,建立了最小化最大任务完工时间优化模型,设计了一种混合粒子群算法(HPSO)。算法使用随机生成的任务序列作为粒子,采用批首次匹配(BFF)规则对任务序列分批,最长加工时间(LPT)规则将批分配到批处理机,并提出了一种最小完工时间差(MCD)规则对LPT调度结果进行优化;为避免早熟,算法引入交叉和变异操作搜索最优解。通过仿真实验与SA、GA算法对比,实验结果表明算法具有良好的性能。  相似文献   

11.
Recently, anisotropic 2D materials, such as black phosphorus and rhenium disulfides (ReS2), have attracted a lot attention because of their unique applications on electronics and optoelectronics. In this work, the direct growth of high‐quality ReS2 atomic layers and nanoribbons has been demonstrated by using chemical vapor deposition (CVD) method. A possible growth mechanism is proposed according to the controlled experiments. The CVD ReS2‐based filed‐effect transistors (FETs) show n‐type semiconducting behavior with a current on/off ratio of ≈106 and a charge carrier mobility of ≈9.3 cm2 Vs−1. These results suggested that the quality of CVD grown ReS2 is comparable to mechanically exfoliated ReS2, which is also further supported by atomic force microscopy imaging, high‐resolution transmission electron microscopy imaging and thickness‐dependent Raman spectra. The study here indicates that CVD grown ReS2 may pave the way for the large‐scale fabrication of ReS2‐based high‐performance optoelectronic devices, such as anisotropic FETs and polarization detection.  相似文献   

12.
This paper presents a study on the two-stage assembly flow shop scheduling problem for minimising the weighed sum of maximum makespan, earliness and lateness. There are m machines at the first stage, each of which produces a component of a job. A single machine at the second stage assembles the m components together to complete the job. A novel model for solving the scheduling problem is built to optimise the maximum makespan, earliness and lateness simultaneously. Two optimal operation sequences of jobs are determined and verified. As the problem is known to be NP-hard, a hybrid variable neighbourhood search – electromagnetism-like mechanism (VNS-EM) algorithm is proposed for its handling. To search beyond local optima for a global one, VNS algorithm is embedded in each iteration of EM, whereby the fine neighbourhood search of optimum individuals can be realised and the solution is thus optimised. Simulation results show that the proposed hybrid VNS-EM algorithm outperforms the EM and VNS algorithms in both average value and standard deviation.  相似文献   

13.
Batch processing machines that process a group of jobs simultaneously are often encountered in semiconductor manufacturing and metal heat treatment. This paper considered the problem of scheduling a batch processing machine from a clustering perspective. We first demonstrated that minimising makespan on a single batching machine with non-identical job sizes can be regarded as a special clustering problem, providing a novel insight into scheduling with batching. The definition of WRB (waste ratio of batch) was then presented, and the objective function of minimising makespan was transformed into minimising weighted WRB so as to define the distance measure between batches in a more understandable way. The equivalence of the two objective functions was also proved. In addition, a clustering algorithm CACB (constrained agglomerative clustering of batches) was proposed based on the definition of WRB. To test the effectiveness of the proposed algorithm, the results obtained from CACB were compared with those from the previous methods, including BFLPT (best-fit longest processing time) heuristic and GA (genetic algorithm). CACB outperforms BFLPT and GA especially for large-scale problems.  相似文献   

14.
Batch processing machines (BPMs) have important applications in a variety of industrial systems. This paper considers the problem of scheduling two BPMs in a flow shop with arbitrary release times and blocking such that the makespan is minimised. The problem is formulated as a mixed integer programming model. Subsequently, a hybrid discrete differential evolution (HDDE) algorithm is proposed. In the algorithm, individuals in the population are first represented as discrete job sequences, and mutation and crossover operators are applied based on the representation. Second, after using the first-fit rule to form batches, a novel least idle/blocking time heuristic is developed to schedule the batches in the flow shop. Furthermore, an effective local search technique is embedded in the algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by comparing its results to a commercial solver (CPLEX), a genetic algorithm and a simulated annealing algorithm. Computational experiments demonstrate the superiority of the HDDE algorithm in terms of solution quality, robustness and run time.  相似文献   

15.
Zhongshi Shao  Weishi Shao 《工程优选》2017,49(11):1868-1889
This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.  相似文献   

16.
Abstract

An alternative formulation of the scheduling problem in a robot‐centered manufacturing cell has been described here, which was originally formulated by Lin et al. [7] as a mixed integer programming problem. An efficient procedure based on the branch and bound technique has been proposed. In order to reduce the complexity of the branching procedure, several sequencing rules [4] have been imbedded into the proposed procedure and an integrated algorithm has then been presented. The computational results have indicated the proposed algorithm to be efficient. Finally, conclusions and some suggestions are given.  相似文献   

17.
Effective solutions to the cell formation and the production scheduling problems are vital in the design of virtual cellular manufacturing systems (VCMSs). This paper presents a new mathematical model and a scheduling algorithm based on the techniques of genetic algorithms for solving such problems. The objectives are: (1) to minimize the total materials and components travelling distance incurred in manufacturing the products, and (2) to minimize the sum of the tardiness of all products. The proposed algorithm differs from the canonical genetic algorithms in that the populations of candidate solutions consist of individuals of different age groups, and that each individual's birth and survival rates are governed by predefined aging patterns. The condition governing the birth and survival rates is developed to ensure a stable search process. In addition, Markov Chain analysis is used to investigate the convergence properties of the genetic search process theoretically. The results obtained indicate that if the individual representing the best candidate solution obtained is maintained throughout the search process, the genetic search process converges to the global optimal solution exponentially.

The proposed methodology is applied to design the manufacturing system of a company in China producing component parts for internal combustion engines. The performance of the proposed age-based genetic algorithm is compared with that of the conventional genetic algorithm based on this industrial case. The results show that the methodology proposed in this paper provides a simple, effective and efficient method for solving the manufacturing cell formation and production scheduling problems for VCMSs.  相似文献   

18.
Highly efficient photocatalytic hydrogen evolution (PHE) is highly desirable for addressing the global energy crisis and environmental problems. Although much attention has been given to electron–hole separation, ridding photocatalysts of poor efficiency remains challenging. Here, a two‐electron catalytic reaction is developed by utilizing the distinct trion behavior of ReS2 and the efficient reduction of two H+ (2H+ + 2e? → H2) is realized. Due to the monolayer‐like structure of the catalyst, the free electrons in ReS2 can be captured by the tightly bound excitons to form trions consisting of two electrons and one hole. These trions can migrate to the surface and participate in the two‐electron reaction at the abundant active sites. As expected, such a two‐electron catalytic reaction endows ReS2 with a PHE rate of 13 mmol g?1 h?1 under visible light irradiation. Meanwhile, this reaction allows the typically poor PHE efficiency of pure transition metal dichalcogenides to be overcome. The proposed two‐electron catalytic reaction provides a new approach to the design of photocatalysts for PHE.  相似文献   

19.
ReS2 represents a different class of 2D materials, which is characterized by low symmetry having 1D metallic chains within the planes and extremely weak interlayer bonding. Here, the thermal conductivity of single‐crystalline ReS2 in a distorted 1T phase is determined at room temperature for the in‐plane directions parallel and perpendicular to the Re‐chains, and the through‐plane direction using time‐domain thermoreflectance. ReS2 is prepared in the form of flakes having thicknesses of 60–450 nm by micromechanical exfoliation, and their crystalline orientations are identified by polarized Raman spectroscopy. The in‐plane thermal conductivity is higher along the Re‐chains, (70 ± 18) W m?1 K?1, as compared to transverse to the chains, (50 ± 13) W m?1 K?1. As expected from the weak interlayer bonding, the through‐plane thermal conductivity is the lowest observed to date for 2D materials, (0.55 ± 0.07) W m?1 K?1, resulting in a remarkably high anisotropy of (130 ± 40) and (90 ± 30) for the two in‐plane directions. The thermal conductivity and interface thermal conductance of ReS2 are discussed relative to the other 2D materials.  相似文献   

20.
This paper considers the parallel batch processing machine scheduling problem which involves the constraints of unequal ready times, non-identical job sizes, and batch dependent processing times in order to sequence batches on identical parallel batch processing machines with capacity restrictions. This scheduling problem is a practical generalisation of the classical parallel batch processing machine scheduling problem, which has many real-world applications, particularly, in the aging test operation of the module assembly stage in the manufacture of thin film transistor liquid crystal displays (TFT-LCD). The objective of this paper is to seek a schedule with a minimum total completion time for the parallel batch processing machine scheduling problem. A mixed integer linear programming (MILP) model is proposed to optimise the scheduling problem. In addition, to solve the MILP model more efficiently, an effective compound algorithm is proposed to determine the number of batches and to apply this number as one parameter in the MILP model in order to reduce the complexity of the problem. Finally, three efficient heuristic algorithms for solving the large-scale parallel batch processing machine scheduling problem are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号