首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of a control chart is completely characterized by its run length distribution. Quality practitioners usually do not have access to the run length distribution but rely on the average run length (ARL) to design and evaluate the performance of an exponentially weighted moving average (EWMA) control chart. This article presents a web-based tool that provides users easy access to the Phase 2 (online or monitoring phase) run length distribution for a two-sided EWMA control chart with known parameters. The web-based tool calculates the run length distribution, percentiles of the run length distribution, as well as the mean (ARL) and variance (VRL) of the run length distribution. Additional functionality of the web-based tool includes plotting the run length distribution functions, building tables of the quantiles of the run length distribution, finding the smoothing parameter (λ) for an EWMA control chart for fixed control limit that satisfies ARL, VRL or percentile performance, and finding the control chart limit (k) for an EWMA control chart that satisfies ARL, VRL, or percentile performance. This tool and these techniques enable quality practitioners to better design and evaluate EWMA control charts.  相似文献   

2.
Control charts are effective tools for signal detection in manufacturing processes. As much of the data in industries come from processes having non‐normal or unknown distributions, the commonly used Shewhart variable control charts cannot be appropriately used, because they depend heavily on the normality assumption. The average run length (ARL) is generally used to measure the detection performance of a process when using a control chart, but it is biased for the monitoring statistic with an asymmetric distribution. That is, the ARL‐biased control chart leads to take longer to detect the shifts in parameter than to trigger a false alarm. To overcome this problem, we herein propose an ARL‐unbiased exponentially weighted moving average proportion (EWMA‐p) chart to monitor the process variance for process data with non‐normal or unknown distributions. We further explore the procedure to determine the control limits and to investigate the out‐of‐control variance detection performance of the ARL‐unbiased EWMA‐p chart. With a numerical example involving non‐normal service times from a bank branch in Taiwan, we illustrate the applications of the proposed ARL‐unbiased EWMA‐p chart and also compare the out‐of‐control detection performance of the ARL‐unbiased EWMA‐p chart, the arcsin transformed symmetric EWMA variance, and other existing variance charts. The proposed ARL‐unbiased EWMA‐p chart shows superior detection performance. Thus, we recommend the ARL‐unbiased EWMA‐p chart for process data with non‐normal or unknown distributions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, we study exponentially weighted moving average (EWMA) charts for monitoring Weibull quantiles (percentiles) based on a monitoring statistic conditioned on ancillary statistics when samples may be Type II censored. The monitoring statistic has a distribution form that is intractable, but analytic forms of the density and distribution functions can be derived when it is conditioned on ancillary statistics. We use these results to develop EWMA control charts and, in certain cases, evaluate their average run length without resorting to simulations. We compare the average run length performance of the EWMA charts with those of probability‐limit charts, studied by the authors, and probability‐limit charts enhanced with Western Electric alarm rules. We apply the charts to the breaking strength of carbon fibers to detect shifts in a specific Weibull quantile. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Exponentially weighted moving average (EWMA) control charts have received considerable attention for detecting small changes in the process mean or the process variability. Several EWMA control charts are constructed using logarithmic and normalizing transformations on unbiased sample variance for monitoring changes in the process dispersion. In this paper, we propose new EWMA control charts for monitoring process dispersion based on the best linear unbiased absolute estimators obtained under simple random sampling (SRS) and ranked set sampling (RSS) schemes, named EWMA‐SRS and EWMA‐RSS control charts. The performance of the proposed EWMA control charts is evaluated in terms of the average run length and standard deviation of run length, estimated by using Monte Carlo simulations. The proposed EWMA control charts are then compared with their existing counterparts for detecting increases and decreases in the process dispersion. It turns out that the EWMA‐RSS control chart performs uniformly better than its analogues for detecting overall changes in process dispersion. Moreover, the EWMA‐SRS chart significantly outperforms the existing EWMA charts for detecting increases in process variability. A real data set is also used to explain the construction and operations of the proposed EWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A multivariate extension of the exponentially weighted moving average (EWMA) control chart is presented, and guidelines given for designing this easy-to-implement multivariate procedure. A comparison shows that the average run length (ARL) performance of this chart is similar to that of multivariate cumulative sum (CUSUM) control charts in detecting a shift in the mean vector of a multivariate normal distribution. As with the Hotelling's χ2 and multivariate CUSUM charts, the ARL performance of the multivariate EWMA chart depends on the underlying mean vector and covariance matrix only through the value of the noncentrality parameter. Worst-case scenarios show that Hotelling's χ2 charts should always be used in conjunction with multivariate CUSUM and EWMA charts to avoid potential inertia problems. Examples are given to illustrate the use of the proposed procedure.  相似文献   

6.
Exponentially weighted moving average (EWMA) control charts have been widely accepted because of their excellent performance in detecting small to moderate shifts in the process parameters. In this paper, we propose new EWMA control charts for monitoring the process mean and the process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named EWMA‐ODRSS and EWMA‐OIDRSS charts, respectively. We use Monte Carlo simulations to estimate the average run length, median run length, and standard deviation of run length of the proposed EWMA charts. We compare the performances of the proposed EWMA charts with the existing EWMA charts when detecting shifts in the process mean and in the process variability. It turns out that the EWMA‐ODRSS mean chart performs uniformly better than the classical EWMA, fast initial response‐based EWMA, Shewhart‐EWMA, and hybrid EWMA mean charts. The EWMA‐ODRSS mean chart also outperforms the Shewhart‐EWMA mean charts based on ranked set sampling (RSS) and median RSS schemes and the EWMA mean chart based on ordered RSS scheme. Moreover, the graphical comparisons of the EWMA dispersion charts reveal that the proposed EWMA‐ODRSS and EWMA‐OIDRSS charts are more sensitive than their counterparts. We also provide illuminating examples to illustrate the implementation of the proposed EWMA mean and dispersion charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart.  相似文献   

8.
In this paper, we proposed the Bayesian exponentially weighted moving average (EWMA) control charts for mean under the nonnormal life time distributions. We used the time between events data which follow the Exponential distribution and proposed the Bayesian EWMA control charts for Exponential distribution and transformed Exponential distributions into Inverse Rayleigh and Weibull distributions. In order to develop the control charts, we used a uniform prior under five different symmetric and asymmetric loss functions (LFs), namely, squared error loss function (SELF), precautionary loss function (PLF), general entropy loss function (GELF), entropy loss function (ELF), and weighted balance loss function (WBLF). The average run length (ARL) and the standard deviation of run length (SDRL) are used to check the performance of the proposed Bayesian EWMA control charts for Exponential and transformed Exponential distributions. An extensive simulation study is conducted to evaluate the proposed Bayesian EWMA control chart for nonnormal distributions. It is observed from the results that the proposed control chart with the Weibull distribution produces the best results among the considered distributions under different LFs. A real data example is presented for implementation purposes.  相似文献   

9.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as an advanced statistical process monitoring tool due to their excellent performance in detecting small to moderate shifts in process parameters. In this paper, we propose a new EWMA control chart for monitoring the process dispersion based on the best linear unbiased absolute estimator (BLUAE) obtained under paired ranked set sampling (PRSS) scheme, which we name EWMA‐PRSS chart. The performance of the EWMA‐PRSS chart is evaluated in terms of the average run length and standard deviation of run length, estimated using Monte Carlo simulations. These control charts are compared with their existing counterparts for detecting both increases and decreases in the process dispersion. It is observed that the proposed EWMA‐PRSS chart performs uniformly better than the EWMA dispersion charts based on simple random sampling and ranked set sampling (RSS) schemes. We also construct an EWMA chart based on imperfect PRSS (IPRSS) scheme, named EWMA‐IPRSS chart, for detecting overall changes in the process variability. It turns out that, with reasonable assumptions, the EWMA‐IPRSS chart outperforms the existing EWMA dispersion charts. A real data set is used to explain the construction and operation of the proposed EWMA‐PRSS chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A new control chart, namely, modified exponentially weighted moving average (EWMA) control chart, for monitoring the process variance is introduced in this work by following the recommendations of Khan et al.15 The proposed control chart deduces the existing charts to be its special cases. The necessary coefficients, which are required for the construction of modified EWMA chart, are determined for various choices of sample sizes and smoothing constants. The performance of the proposed modified EWMA is evaluated in terms of its run length (RL) characteristics such as average RL and standard deviation of RL. The efficiency of the modified EWMA chart is investigated and compared with some existing control charts. The comparison reveals the superiority of proposal as compared with other control charts in terms of early detection of shift in process variation. The application of the proposal is also demonstrated using a real-life dataset.  相似文献   

11.
Process control measures are mostly applied in production and manufacturing industries. The most important tool used in these disciplines is control chart. In manufacturing and production processes, when the quality characteristic of interest cannot be directly measured, it becomes essential to apply attribute control charts. To monitor fraction nonconforming of the output, quality practitioners mostly prefer p-chart. In this article, a new progressive mean (PM) control chart is being proposed for monitoring drift in proportion of nonconforming products. The design evaluations of the proposed chart are made and compared through different properties of run length distribution, such as average run length (ARL), standard deviation of run length (SDRL), and some percentile points. The performance of the proposed chart is assessed under zero-state and steady-state scenarios. The proposed PM chart is compared with p-chart, moving average (MA) chart, optimal CUSUM chart, modified exponentially weighted moving average (EWMA) chart, and runs rules p-charts for monitoring fraction nonconforming. The proposed chart spots efficiently sustained disturbances in the process as compared with their existing counterparts. Two illustrative examples are also provided; one from real-life application of nonconforming bearing and seal assemblies data and the other from simulated data for the implementation of PM chart.  相似文献   

12.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The exponentially weighted moving average (EWMA) control chart is a memory‐type process monitoring tool that is frequently used to monitor small and moderate disturbances in the process mean and/or process dispersion. In this study, we propose 2 new memory‐type control charts for monitoring changes in the process dispersion, namely, the generally weighted moving average and the hybrid EWMA charts. We use Monte Carlo simulations to compute the run length profiles of the proposed control charts. The run length comparisons of the proposed and existing charts reveal that the generally weighted moving average and hybrid EWMA charts provide better protection than the existing EWMA chart when detecting small to moderate shifts in the process dispersion. An illustrative dataset is also used to show the superiority of the proposed charts over the existing chart.  相似文献   

15.
The number of studies about control charts proposed to monitor profiles, where the quality of a process/product is expressed as function of response and explanatory variable(s), has been increasing in recent years. However, most authors assume that the in‐control parameter values are known in phase II analysis and the error terms are normally distributed. These assumptions are rarely satisfied in practice. In this study, the performance of EWMA‐R, EWMA‐3, and EWMA‐3(d2) methods for monitoring simple linear profiles is examined via simulation where the in‐control parameters are estimated and innovations have a Student's t distribution or gamma distribution. Instead of the average run length (ARL) and the standard deviation of run length, we used average and standard deviation of the ARL as performance measures in order to capture the sampling variation among different practitioners. It is seen that the estimation effect becomes more severe when the number of phase I profiles used in estimation decreases, as expected, and as the distribution deviates from normality to a greater extent. Besides, although the average ARL values get closer to the desired values as the amount of phase I data increases, their standard deviations remain far away from the acceptable level indicating a high practitioner‐to‐practitioner variability.  相似文献   

16.
Monitoring disturbances in process dispersion using control chart is mostly based on the assumption that the quality characteristic follows normal distribution, which is not the case in many real-life situations. This paper proposes a set of new dispersion charts based on the homogeneously weighted moving average (HWMA) scheme, for efficient detection of shifts in process standard deviation (σ). These charts are based on a variety of σ estimators and are investigated for normal as well as heavy tailed symmetric and skewed distributions. The shift detection ability of the charts is evaluated using different run length characteristics, such as average run length (ARL), extra quadratic loss (EQL), and relative ARL measures. The performance of the proposed HWMA control charts is also compared with the existing EWMA dispersion charts, using different design parameters. Furthermore, an illustrative example is presented to monitor the vapor pressure in a distillation process.  相似文献   

17.
Exponentially weighted moving average (EWMA) quality control schemes have been recognized as a potentially powerful process monitoring tool because of their superior speed in detecting small to moderate shifts in the underlying process parameters. In quality control literature, there exist several EWMA charts that are based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. Recently, a mixed RSS (MxRSS) scheme has been introduced, which encompasses both SRS and RSS schemes, and is a cost‐effective alternative to the RSS scheme. In this paper, we propose new EWMA control charts for efficiently monitoring the process mean based on MxRSS and imperfect MxRSS (IMxRSS) schemes, named EWMA–MxRSS and EWMA–IMxRSS charts, respectively. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed EWMA charts. The run length performances of the suggested EWMA charts are compared with the classical EWMA chart based on SRS (EWMA–SRS). It turns out that both EWMA–MxRSS and EWMA–IMxRSS charts perform uniformly better than the EWMA–SRS chart when detecting all different shifts in the process mean. An application to a real data set is provided as an illustration of the design and implementation of the proposed EWMA chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The times between events control charts have been proposed in literature for statistical monitoring of high‐yield processes by observing the waiting times up to r th (r ≥ 1  ) non‐conforming items or defects. The average run length (ARL) is the most widely used performance measure to evaluate the chart's performance, but in recent years, it has been subjected to criticisms. Because the run length distribution is highly skewed and hence, the ARL is not necessarily a typical value of the run length. Thus, evaluation of the control chart based on ARL alone could be misleading. In this paper, the quantiles of run length distribution are considered, instead of ARL, to design the tr ‐chart. Further, we eliminate the bias in q th quantile function of the tr ‐chart for both the known and unknown parameter case. In particular, the MRL‐unbiased tr ‐chart is discussed in detail and compared with the ARL‐unbiased tr ‐chart. It is found that the MRL‐unbiased tr ‐chart outperforms than the corresponding ARL‐unbiased chart in unknown parameter case. It is also found that the proposed chart requires less phase I observations than that of the earlier studies has been suggested.  相似文献   

19.
The performance of control charts can be adversely affected when based on parameter estimates instead of known in‐control parameters. Several studies have shown that a large number of phase I observations may be needed to achieve the desired in‐control statistical performance. However, practitioners use different phase I samples and thus different parameter estimates to construct their control limits. As a consequence, there would be in‐control average run length (ARL) variation between different practitioners. This kind of variation is important to consider when studying the performance of control charts with estimated parameters. Most of the previous literature has relied primarily on the expected value of the ARL (AARL) metric in studying the performance of control charts with estimated parameters. Some recent studies, however, considered the standard deviation of the ARL metric to study the performance of control charts. In this paper, the standard deviation of the ARL metric is used to study the in‐control and out‐of‐control performance of the adaptive exponentially weighted moving average (AEWMA) control chart. The performance of the AEWMA chart is then compared with that of the Shewhart and EWMA control charts. The simulation results show that the AEWMA chart might represent a good solution for practitioners to achieve a reasonable amount of ARL variation from the desired in‐control ARL performance. In addition, we apply a bootstrap‐based design approach that provides protection against frequent false alarms without deteriorating too much the out‐of‐control performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Control chart is a well-known tool for monitoring the performance of an ongoing process. The variability of a process is an important parameter that may deteriorate the process performance if it is not taken care on time. In this study, we have proposed some new auxiliary information-based exponentially weighted moving average (EWMA) charts for improved monitoring of process variability. We employed auxiliary information in some useful forms including ratio, regression, power ratio, ratio exponential, ratio regression, power ratio regression, and ratio exponential regression estimators. The performance of the newly developed charts is evaluated and compared with some existing charts (viz., the NEWMA, the Improved R, the Synthetic R, and the classical R charts), using some useful measures such as average run length (ARL), extra quadratic loss, and relative ARL. The comparative analysis revealed that the proposed charts outperform their counterparts, especially when there is a strong relationship between the study and the auxiliary variables. Finally, an illustrative example is provided for the monitoring of air quality data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号