首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
桩土界面荷载传递模型对预测桩的承载变形性状有重要影响。本文在总结前人研究成果的基础上,改进了反应桩土界面荷载传递性状的双曲线模型。改进后的模型可以描述随着地基土的固结,桩侧土初始剪切刚度随时间增长及桩土界面的加载、卸载循环剪切特性。利用该模型分析了大面积堆载下,在桩顶作用大小不同的竖向荷载以及桩侧土达到不同固结度时再施加桩顶荷载情况下,桩身摩阻力的发展变化规律。研究结果表明:随着地基土的固结,桩身中性点位置处于一个变化过程中,桩顶作用的荷载大小不同,桩身中性点位置也不同;地基土固结一段时间后再打桩能减小桩侧负摩阻力。  相似文献   

2.
基于超长桩试验资料,采用考虑负摩阻力作用的广义双曲线荷载传递模型反映桩侧土弹塑性、软化与稳定三阶段工作特性,桩端采用双曲线荷载传递模型模拟土体的非线性变形特性,并且引入Mindlin解以考虑桩侧摩阻力在桩端处产生的桩端位移,从而建立了层状软土地基中超长桩荷载传递分析理论。该理论可用于计算多层地基中超长桩的桩侧阻力、沉降以及极限承载力,也可用于分析层状地基中超长桩的荷载传递规律。通过工程实例计算与实测对比分析,可知计算得到的荷载-沉降曲线与实测的曲线较为吻合,因此该理论可作为确定桩承载力的依据。该理论可靠、方法简单,且具有较好的适用性。  相似文献   

3.
海涂围垦形成的软黏土地基一般为欠固结土地基。为了研究垦区欠固结软黏土地基中的桩基负摩阻力规律,考虑不同桩周土初始含水率,以及自重固结和堆载2种工况,开展4组单桩模型试验,基于试验结果分析摩擦型管桩的桩土位移、桩身轴力、桩侧负摩阻力及中性点位置等特性。试验结果表明,不论在堆载还是自重固结条件下,随着桩周土含水率的提高,桩身沉降、土体沉降、桩身轴力及桩侧负摩阻力总体成增大趋势,桩周土初始含水率的降低引起的中性点位置的升高。在堆载条件下,中性点位置随着荷载等级的提高而下移;自重固结条件下,中性点位置随固结时间变化不大。在工程实际中,桩周土初始含水率的增加会扩大负摩阻力范围,增大负摩阻力峰值和桩身轴力,因此需要注意其对欠固结软黏土地基桩基负摩阻力的影响。  相似文献   

4.
大直径钻孔灌注桩负摩阻力试验研究   总被引:1,自引:0,他引:1  
 针对大面积堆载情况下,周边土体的沉降使桩基产生负摩阻力从而导致桩基承载力特性变化的问题,以宁海电厂工程2组冲孔灌注桩的现场负摩阻力试验为例进行讨论。通过对原位试验结果的全面分析,探讨桩周土体固结沉降对桩身所受下拉荷载和中性点位置的影响。根据实测桩土沉降曲线确定的中性点与根据桩身轴力沿深度变化曲线确定的中性点位置大体相一致,位于可压缩土层下部,桩身最大轴力随固结时间而增大,中性点位置也随时间略有上移;分析桩侧摩阻力系数的大致范围以及施工工艺对负摩阻力的影响,现场试验得到的桩侧摩阻力系数为0.3~0.4,由于桩基施工的影响导致该值与规范相比略大,工程中应充分考虑成桩工艺对负摩阻力的影响;指出负摩阻力桩基的设计分析中沉降计算至关重要。得出的结论可指导同类工程的设计和施工。  相似文献   

5.
桩土界面荷载传递双曲线模型的改进及其应用   总被引:2,自引:0,他引:2  
 首先,在总结前人土–结构相互作用试验研究成果的基础上,改进反应桩土界面荷载传递性状的双曲线模型,改进后的模型能够描述随着地基土固结、桩侧土初始剪切刚度随时间增长以及桩土界面的分阶段加/卸载循环剪切特性。然后,利用改进模型对文献中的算例进行分析,计算结果与文献结果比较接近,验证了改进模型的合理性。最后,利用该模型分析大面积荷载下,在桩顶作用大小不同的竖向荷载以及桩侧土达到不同固结度时再打桩情况下,桩身摩阻力、中性点位置及桩承载力的发展变化规律。研究结果表明,桩身中性点位置、桩身负摩阻力随地基土的固结逐渐变化;在地基土固结过程中,桩承载力逐渐减小。该研究成果可为桩基工程设计提供有益的参考。  相似文献   

6.
利用滨海新区某吹填场地,选取不同的初始固结度为变化条件,采用ABAQUS有限元计算软件对吹填地基中单桩侧摩阻力进行了计算分析,得出与固结度相关的桩侧摩阻力的变化规律,并重点探讨了由于土体固结沉降大于桩体沉降所引起的桩侧负摩阻力的变化,得出了中性点位置随初始固结度的变化规律,为今后实际工程提供了一定的参考。  相似文献   

7.
本文针对桩土工后沉降引起的负摩擦效应,建立了桩和土体协同作用的三维计算模型,对桩土沉降过程进行了内力和变形计算,分析了不同欠固结土厚度和桩顶荷载对负摩擦效应的影响。计算结果表明在欠固结土厚度为定值时,桩侧负摩阻力随桩顶荷载的增大而减小,桩顶荷载越大,"中性点"位置越靠近地面(即上移),欠固结土厚度越大,"中性点"位置越远离地面(即下移);桩体轴力分布沿桩身呈现先增大后减小的趋势,轴力最大值对应桩侧摩阻力为零的位置,即桩体中性点位置;在桩端部位存在摩阻力的增强效应,受桩顶荷载大小的影响,轴力在桩端部位的变化幅度较大。随着欠固结土厚度的增大,土体的沉降量也逐渐增大;随着桩顶荷载的增大,土体的沉降量也逐渐增大,但欠固结厚度对于沉降量的影响大于桩顶荷载对于沉降量的影响。  相似文献   

8.
为了计算嵌入固结土壤中的单桩的负摩阻力,论文基于一维戴维斯非线性固结土沉降和双曲线荷载传递模型,建立单桩拉力荷载的计算模型。通过实际工程数据验证,建立的数学模型的准确性和可靠性较好,可为实际工程中单桩的负摩阻力设计和计算提供参考。  相似文献   

9.
大面积荷载下非饱和软土场地单桩负摩阻力在采用《建筑桩基技术规范》(JGJ 94-2008)进行计算时,会遇到桩侧软弱土层深度确定困难、负侧摩阻力分布形式与该规范建议方法确定的形式有差异等问题,导致基桩负摩阻力计算困难.为解决上述问题,基于《建筑桩基技术规范》(JGJ 94-2008)对正负侧摩阻力规定或推荐的做法,国内外对单桩负侧摩阻力的研究、实测成果,结合某工程场地形成后大面积填土荷载作用条件及地层分布等,建立了大面积荷载作用下基桩负侧摩阻力分布的概念模型;基于实测桩侧土变形数据,对场区土层的变形数据进行对数曲线拟合,确定场区沉降计算经验系数及桩侧土固结度,并以此来计算桩及桩侧土考虑时间效应的分层沉降,然后基于桩及桩侧土变形相等的原则确定考虑时间效应的中性点.最后给出了大面积荷载下单桩负摩阻力计算的具体方法和步骤.以某工程项目为例的实际计算结果表明,所述方法对大面积荷载下单桩负摩阻力计算具有较强的工程实践及应用价值.  相似文献   

10.
地基土承受大面积堆载作用时 ,就会产生沉降 ,在土体沉降作用下 ,桩侧就会产生负摩阻力 ,本文从桩 土相互作用的机理出发 ,采用太沙基一维固结理论和剪切位移法 ,求出地层沉降过程中桩侧负摩阻力、桩身轴力随深度和时间的变化规律 ,并与现场实测值进行对比 ,为钻孔灌注长桩的设计和计算提供理论参考。  相似文献   

11.
基于ADINA模拟桩土相互作用,简要分析了大面积堆载作用对竖向承载桩桩身负摩阻力、中性点位置的影响。分析结果表明,在堆载条件下,随固结时间的增长,桩基负摩阻力不断增长,且中性点位置不断变浅。随着堆载的增加,桩身承受的负摩阻力随之增加、中性点位置逐渐加深,且负摩阻力引起的桩身附加轴力也随之增大。  相似文献   

12.
考虑时间效应的群桩负摩阻力模型试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基桩负摩阻力是桩基础设计中必须考虑的重要问题之一,但是针对考虑土体固结时间效应的群桩负摩阻力研究却相对较少。进行了在地面堆载固结条件下,黏性土层中3×3群桩负摩阻力性状的室内模型试验研究,测得了不同桩间距(3d,4d,6d)条件下各位置桩(角桩、边桩、中心桩)的桩侧负摩阻力、桩端阻力以及桩周土体分层沉降随固结时间的变化情况,分析了桩身下拽力和中性点位置随时间的变化规律;并进行了同等条件下单桩及2×2群桩(4d)试验作为比较分析。试验结果表明,群桩中桩侧负摩阻力引起的下拽力和中性点位置都存在明显的时间效应和群桩效应,其数值与基桩数、基桩的布置位置及桩间距等因素有关;在本文试验情况下,当桩–土相对位移达到2 mm时,桩侧负摩阻力将达到其最大值的80%~90%。  相似文献   

13.
袁灯平 《重庆建筑》2011,10(6):13-17
文中基于桩土共同作用机理,考虑桩土体接触面效应,建立了软土地基桩侧表面负摩阻力三维弹塑性有限元分析模型。在此基础上,重点模拟分析了某典型软土地基土体特性、桩土接触面参数、土体结构性及堆载等因素对负摩阻力的影响规律。最后,对未来关于负摩阻力研究仍亟需解决的几个关键问题等进行了初步探讨。研究成果和分析思路可为类似条件下桩侧负摩阻力的计算和施工提供有益的参考。  相似文献   

14.
通过室内模型试验,研究堆载和桩载施加顺序对单桩负摩阻力的影响。试验结果表明:先堆载后桩载工况下,堆载完成后,中性点位置离桩顶最远,随桩载增加,中性点位置逐渐上移,最终中性点位置在桩顶以下0.5l附近,桩身轴力呈先增加后减小的趋势,单桩承载力发挥系数为0.69。先桩载后堆载工况下,先施加桩载时,桩身轴力沿深度逐渐减小,无中性点,施加堆载时,轴力呈先增加后减小趋势,中性点出现并逐渐下移,最终中性点位置在0.41l附近,单桩承载力发挥系数为0.86。先桩载后堆载较先堆载后桩载桩基承载力发挥系数大,即桩基承载力安全储备小。以上分析表明,荷载施加顺序对基桩的负摩阻力分布有很大的影响,建议在实际工程中综合分析地质条件、桩基的受力特点及承载要求,选取合适的加载顺序来减小桩身负摩阻力。  相似文献   

15.
研究了刚性桩复合地基桩侧摩阻力在线性模式下中性面深度及桩土应力比的计算方法。根据刚性桩复合地基各组成部分的沉降变形关系,推导了垫层–桩–土的变形协调方程。考虑负摩阻力对桩土工作性状的影响,将桩侧摩阻力分布由试验曲线简化为线性模式,同时考虑桩顶刺入褥垫层,桩底刺入下卧层,结合桩土变形协调方程推导了中性面深度、桩顶平面桩土应力比、中性面桩土应力比的计算公式。分析了多种因素对中性面深度及桩土应力比的影响,结果表明:刚性桩复合地基的中性面深度比在0.15~0.35之间,中性面桩土应力比相比桩顶平面桩土应力比增大10%~40%。最后应用于某工程现场载荷试验和某刚性桩复合地基模型试验,计算值与试验值吻合较好。  相似文献   

16.
考虑桩周土体及桩–土接触的非线性,建立了空间轴对称有限元模型;结合此模型提出了计算自重湿陷性黄土地区合理桩长的方法——叠加法,得出了当中性点上、下土层摩擦力分布形式相同时,应增加的桩长与摩擦力的分布形式无关,而只与极限摩擦力的大小有关的结论。运用此方法分析了自重湿陷性黄土湿陷特性对桩基承载性状的影响规律,结果表明:在极限荷载时,中性点深度与桩长有关;湿陷系数对桩剩余承载力的影响是非线性的;定量给出了中性点深度及应增加桩长的范围。  相似文献   

17.
桩负摩阻力时间效应分析   总被引:2,自引:0,他引:2  
负摩阻力对桩基的承载变形性状有重要影响.分析了大面积堆载下、地基土固结过程中,桩顶荷载大小、桩端支承条件等因素对桩身负摩阻力、中性点位置的影响.结果表明,在地基土固结过程中,桩身负摩阻力、中性点位置也处于一个变化过程中.桩顶竖向荷载越大,中性点深度越浅,桩身承受的下拽力越小.研究还表明,在地基土固结过程中,桩的承载力逐渐减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号