首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scheduling problems under distributed production or flexible assembly settings have achieved increasing attention in recent years. This paper considers scheduling the integration of these two environments and proposes an original distributed flowshop scheduling problem with flexible assembly and set-up time. Distributed production stage is deployed several homogeneous flowshop factories that process the jobs to be assembled into final products in the flexible assembly stage. The objective is to find a schedule, including a production subschedule for jobs and an assembly subschedule for products, to minimise the makespan. Such a scheduling problem involves four successive decisions: assigning jobs to production factories, sequencing jobs at every factory, designating an assembly machine for each product and sequencing products on each assembly machine. The computational model is first established, and then a constructive heuristic (TPHS) and two hybrid metaheuristics (HVNS and HPSO) are proposed. Numerical experiments have been carried out and results validate the algorithmic feasibility and effectiveness. TPHS can obtain reasonable solutions in a shorter time, while metaheuristics can report better solutions using more yet acceptable time. HPSO is statistically comparable yet less robust compared with HVNS for small-scale instances. For the large-scale case, HPSO outperforms HVNS on both effectiveness and robustness.  相似文献   

2.
This work focuses on the scheduling problem of deadlock and failure-prone automated manufacturing systems, and presents a new scheduling method by combining a robust supervisory control policy and hybrid heuristic search. It aims to minimise makespan, i.e. the completion time of the last part. Based on the extended reach ability graph of the system, it establishes a new heuristic function and two dispatching rules to guide the search process for a schedule. By embedding a robust supervisory control policy into the search process, it develops a polynomial robust dynamic window search algorithm. Failure and repair events of unreliable resources may occur during the execution of a schedule obtained by the proposed algorithm and may make the schedule infeasible. To reduce the influence caused by them and ensure all parts to be finished, this work proposes two event-driven strategies. The first one suspends the execution of the parts requiring failed resources and those to be started until all failed resources are repaired and permits only those parts that have already been processed on working machines to be completed. The second one invokes the proposed algorithm to obtain a new schedule at the vertex generated after a resource failure or repair event and executes the new schedule. Both strategies are effective while the latter performs better at the expense of more computation.  相似文献   

3.
The multi-objective reentrant hybrid flowshop scheduling problem (RHFSP) exhibits significance in many industrial applications, but appears under-studied in the literature. In this study, an iterated Pareto greedy (IPG) algorithm is proposed to solve a RHFSP with the bi-objective of minimising makespan and total tardiness. The performance of the proposed IPG algorithm is evaluated by comparing its solutions to existing meta-heuristic algorithms on the same benchmark problem set. Experimental results show that the proposed IPG algorithm significantly outperforms the best available algorithms in terms of the convergence to optimal solutions, the diversity of solutions and the dominance of solutions. The statistical analysis manifestly shows that the proposed IPG algorithm can serve as a new benchmark approach for future research on this extremely challenging scheduling problem.  相似文献   

4.
5.
The distributed permutation flowshop scheduling problem (DPFSP) is a newly proposed topic in the shop scheduling field, which has important application in globalised and multi-plant environments. This study presents a modified iterated greedy (MIG) algorithm for this problem to minimise the maximum completion time among all the factories. Compared with previous approaches, the proposed algorithm is simpler yet more effective, more efficient, and more robust in solving the DPFSP. To validate the performance of the proposed MIG algorithm, computational experiments and comparisons are conducted on an extended benchmark problem set of Taillard. Despite its simplicity, the computational results show that the proposed MIG algorithm outperforms all existing algorithms, and the best-known solutions for almost half of instances are updated. This study can be offered as a contribution to the growing body of work on both theoretically and practically useful approaches to the DPFSP.  相似文献   

6.
作为基于最优化的近似算法,分析了拉格朗日松弛算法的分解策略,设计了算法的实现优化过程.针对从钢铁生产提炼出的带有限等待时间要求的动态HFS调度,采用基于工件解耦的分解策略,应用拉格朗日松弛算法进行求解,以最小化总加权完成时间和工件等待惩罚之和.该算法将工件耦合约束松弛到目标函数中,将形成的松弛问题分解成多个更易求解的工件级子问题,进而利用动态规划求解这些子问题,通过拉格朗日乘子的更新迭代过程获得原问题的近优解.对不同问题规模的测试结果表明,该算法能在较短的计算时间内得到较好的近优解,说明了拉格朗日松弛算法求解等待时间受限的HFS调度的可行性和有效性.  相似文献   

7.
In this work, the flowshop scheduling problem is considered with the objective of minimising the completion-time variance (CTV) of jobs, and an Ant Colony Optimisation (ACO) algorithm is presented. Two implementations of the Modified Ant Colony Optimisation algorithm (MACO-I and MACO-II) are proposed to solve the permutation flowshop scheduling problem. The proposed ant-colony-algorithm implementations have been tested on 90 benchmark flowshop scheduling problems. The solutions yielded by the proposed MACO implementations are compared with various algorithms and with the best CTV of jobs reported in the literature. The proposed MACO implementations are found to perform very well in minimising the chosen performance measure.  相似文献   

8.
The rapid growth of distributed manufacturing in industry today has recently attracted significant research attention that has focused on distributed scheduling problems. This work studied the distributed mixed no-idle flowshop scheduling problem using makespan as an optimality criterion. To the best of the authors’ knowledge, this is the first paper to study the multi-flowshop extension in which each flowshop has mixed no-idle constraints. A novel cloud theory-based iterated greedy (CTBIG) algorithm was proposed for solving the problem. Computational experiments conducted on a set of test instances revealed that the proposed CTBIG algorithm significantly outperformed classic iterated greedy algorithms.  相似文献   

9.
This paper addresses the scheduling problems in a hybrid flowshop with two objectives of minimising the makespan and total tardiness. Since this problem is NP-hard, evolutionary algorithms based on the genetic algorithm (GA) namely; BOGAW, BOGAC, BOGAT, and BOGAS are proposed for searching the Pareto-optimal frontier. In these algorithms, we propose to generate a section of solutions for the next generation using a neighbourhood search structure on the best individual in each generation. The selection procedure selects the best chromosome based on an evaluation mechanism used in the algorithm (i.e., weighted sum, crowding distance, TOPSIS and single-objective). The aim of this paper is to clarify that the cited characteristic is efficient and it enhances the efficiency of algorithms. Therefore, we perform a comparison between the proposed algorithms to find the best alternative. Data envelopment analysis is used to evaluate the performance of approximation methods. The obtained result from the comparison shows that, BOGAC is the more efficient. To continue, since the efficiency of our idea is not clear, we compare our efficient algorithm with other efficient algorithms in the literature (namely PGA-ALS and MOGLS). The final persuasive results support the idea that BOGAC in comparison with PGA-ALS and MOGLS is more effective and efficient.  相似文献   

10.
Flowshop scheduling problems have been extensively studied by several authors using different approaches. A typical flowshop process consists of successive manufacturing stages arranged in a single production line where different jobs have to be processed following a predefined production recipe. In this work, the scheduling of a complex flowshop process involving automated wet-etch station from semiconductor manufacturing systems requires a proper synchronisation of processing and transport operations, due to stringent storage policies and fixed transfer times between stages. Robust hybrid solution strategies based on mixed integer linear programming formulations and heuristic-based approaches, such as aggregation and decomposition methods, are proposed and illustrated on industrial-scale problems. The results show significant improvements in solution quality coupled with a reduced computational effort compared to other existing methodologies.  相似文献   

11.
To achieve a significant improvement in the overall performance of a flexible manufacturing system, the scheduling process must consider the interdependencies that exist between the machining and transport systems. However, most works have addressed the scheduling problem as two independent decision making problems, assuming sufficient capacity in the transport system. In this paper, we study the simultaneous scheduling (SS) problem of machines and automated guided vehicles using a timed coloured Petri net (TCPN) approach under two performance objectives; makespan and exit time of the last job. The modelling approach allows the evaluation of all the feasible vehicle assignments as opposed to the traditional dispatching rules and demonstrates the benefits of vehicle-controlled assignments over machine-controlled for certain production scenarios. In contrast with the hierarchical decomposition technique of existing approaches, TCPN is capable of describing the dynamics and evaluating the performance of the SS problem in a single model. Based on TCPN modelling, SS is performed using a hybrid heuristic search algorithm to find optimal or near-optimal schedules by searching through the reachability graph of the TCPN with heuristic functions. Large-sized instances are solved in relatively short computation times, which were a priori unsolvable with conventional search algorithms. The algorithm’s performance is evaluated on a benchmark of 82 test problems. Experimental results indicate that the proposed algorithm performs better than the conventional ones and compares favourably with other approaches.  相似文献   

12.
Researchers have indicated that a permutation schedule can be improved by a non-permutation schedule in a flowshop with completion time-based criteria, such as makespan and total completion time. This study proposes a hybrid approach which draws on the advantages of simulated annealing and tabu search for the non-permutation flowshop scheduling problem, in which the objective function is the makespan of the schedule. To verify the effectiveness of the proposed hybrid approach, computational experiments are performed on a set of well-known non-permutation flowshop scheduling benchmark problems. The result shows that the performance of the hybrid approach is better than that of other approaches, including ant colony optimisation, simulated annealing, and tabu search. Further, the proposed approach found new upper bound values for all benchmark problems within a reasonable computational time.  相似文献   

13.
This research considers a hybrid flowshop scheduling problem where jobs are organised in families according to their machine settings and tools. The family setup time arises when a machine shifts from processing one job family to another. The problem is compounded by the challenges that the formation of job families is different in different stages and only a limited number of jobs can be processed within one setup. This type of problem is common in the production process of standard metal components. This paper aims to propose two approaches to solve this problem. One is a metaheuristic in the form of a genetic algorithm and the other is a heuristic. The proposed approaches are compared and contrasted against the two relevant metaheuristic and heuristic adapted from solving a generalised sequence-dependent setup flowshop problem. Comparative results indicate that the proposed genetic algorithm has better performance on minimising makespan and the heuristic is more effective on reducing family setup time.  相似文献   

14.
A multidisciplinary design and optimization strategy for a multistage air launched satellite launch vehicle comprising of a solid propulsion system to low earth orbit with the implementation of a hybrid heuristic search algorithm is proposed in this article. The proposed approach integrated the search properties of a genetic algorithm and simulated annealing, thus achieving an optimal solution while satisfying the design objectives and performance constraints. The genetic algorithm identified the feasible region of solutions and simulated annealing exploited the identified feasible region in search of optimality. The proposed methodology coupled with design space reduction allows the designer to explore promising regions of optimality. Modules for mass properties, propulsion characteristics, aerodynamics, and flight dynamics are integrated to produce a high-fidelity model of the vehicle. The objective of this article is to develop a design strategy that more efficiently and effectively facilitates multidisciplinary design analysis and optimization for an air launched satellite launch vehicle.  相似文献   

15.
Branch and bound methods for the scheduling problem with multiprocessor tasks on dedicated processors and arbitrary precedences are presented. The methods are based on different representations of feasible schedules. Computational results show that the methods surpass each other on different types of problems with multiprocessor tasks.Supported by the Deutsche Forschungsgemeinschaft, Project JoPTAG  相似文献   

16.
The multistage hybrid flow-shop scheduling problem with multiprocessor tasks has been found in many practical situations. Due to the essential complexity of the problem, many researchers started to apply metaheuristics to solve the problem. In this paper, we address the problem by using particle swarm optimization (PSO), a novel metaheuristic inspired by the flocking behaviour of birds. The proposed PSO algorithm has several features, such as a new encoding scheme, an implementation of the best velocity equation and neighbourhood topology among several different variants, and an effective incorporation of local search. To verify the PSO algorithm, computational experiments are conducted to make a comparison with two existing genetic algorithms (GAs) and an ant colony system (ACS) algorithm based on the same benchmark problems. The results show that the proposed PSO algorithm outperforms all the existing algorithms for the considered problem.  相似文献   

17.
Seamless steel tubes often have various categories and specifications, which further require complicated operations in production, especially in the cold treating process (CTP). This paper investigates the scheduling problem using the seamless tube plant of Baoshan Iron and Steel Complex as a study background. By considering the practical production constraints such as sequence-dependent setup times, maintenance schedule, intermediate material buffers, job-machine matches, we formulate the hybrid flowshop scheduling problem with a non-linear mixed integer programming model (NMIP). In addition, our model provides a flexibility to remove the permutation assumption, which is often a limitation in early studies. In order to obtain the solution of the above NMIP problem, a two-stage heuristic algorithm is proposed and it combines a modified genetic algorithm and a local search method. With real production instances, our computation experiments indicate that the proposed algorithm is efficient and it outperforms several other approaches. Industrial implementation also shows that such a scheduling tool brings a cost saving of more than 10% and it substantially reduces the computation time. Our study also illustrates the need of relaxing permutation assumption in such a scheduling problem with complicated operation sequences.  相似文献   

18.
A novel approach of a discrete self-organising migrating algorithm is introduced to solve the flowshop with blocking scheduling problem. New sampling routines have been developed that propagate the space between solutions in order to drive the algorithm. The two benchmark problem sets of Carlier, Heller, Reeves and Taillard are solved using the new algorithm. The algorithm compares favourably with the published algorithms Differential Evolution, Tabu Search, Genetic Algorithms and their hybrid variants. A number of new upper bounds are obtained for the Taillard problem sets.  相似文献   

19.
并行加工条件下作业排序方法研究   总被引:1,自引:0,他引:1  
何桢  朱礼仁  曹捷  余捷涛 《工业工程》2005,8(2):42-44,60
对单工序并行加工条件下的作业排序问题进行了深入研究,在给出该问题的整数规划模型的基础上,找出了一种新的启发式算法,并编写了相应的计算机程序,示例和模拟结果表明,新算法优于LPT算法并可以通过自迭代求出较优的完工期。同时还可以降低零件的平均完工时间。  相似文献   

20.
用Petri网实现FMS负载平衡调度   总被引:1,自引:0,他引:1  
本文提出了一种改进的基于PN的FMS调度算法.通过在算法中引入虚成本的概念,搜索过程以随系统状态不断改变的虚成本代替实际成本来计算估值函数,动态加大系统中负载较大机器的使用代价,从而增大负载较轻的机器被使用的机会,有效解决了生成的调度结果中系统内同类型机器间负载不均衡的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号