首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a production system consisting of multiple tandem machines subject to random failures. The objective of the study is to find the production rates of the machines in order to minimize the total inventory and backlog costs. By combining analytical formalism and simulation-based statistical tools such as design of experiments (DOE) and response surface methodology (RSM), an approximation of the optimal control policy is obtained. The combined discrete/continuous simulation modeling is used to obtain an estimate of the cost in a fraction of the time necessary for discrete event simulation by reducing the number of events related to parts production. This is achieved by replacing the discrete dynamics of part production by a set of differential equations that describe this process. This technique makes it possible to tackle optimization problems that would otherwise be too time consuming. We provide some numerical examples of optimization and compare computational times between discrete event and discrete/continuous simulation modeling. The proposed combination of DOE, RSM and combined discrete/continuous simulation modeling allows us to obtain the optimization results in a fairly short time period on widely available computer resources.  相似文献   

2.
This article addresses the problem of joint optimisation of production, setup and maintenance activities of unreliable manufacturing system producing two products. Given the complexity of the problem in a dynamic and stochastic environment, the literature has treated the problem separately by considering each axis individually (setup, production and maintenance) or by combining two axes simultaneously (production-setup, production-maintenance). Following the trend of scientific research advances that supports the fact that an integrated control leads to best performances, the main objective of this paper is to provide a control policy that will simultaneously combine the production, the setup and the preventive maintenance activities. To tackle the problem, an experimental resolution approach using combined continuous/discrete event simulation models is considered. The aim is to accurately imitate the production system behaviour, and to optimise the control policy parameters which minimise the total cost incurred. An in-depth study of the effects of the system parameter variation on the performance of the studied policies is performed in order to draw meaningful conclusions and to illustrate the robustness of the proposed resolution approach.  相似文献   

3.
《国际生产研究杂志》2012,50(13):3661-3672
This paper considers joint production control and product quality specifications decision making in unreliable multiple-product manufacturing system. This is with the knowledge that an optimum compromise should guide the decision making process. In fact, tight process specifications will generally lead to products with good quality and higher market values, but at the same time associated with a higher rate of non-conforming parts rejection leading to higher non quality costs and lower plant productivity. Moreover, in unreliable manufacturing context the decision maker should adopt an adequate production policy to hedge against future capacity shortages caused by machine failures in order to meet customer demand. This paper intends to extend previous findings to tackle this problem and study the overall decision making process aiming to guide the production and quality specification decisions in multiple-product context. The overall optimal decision policy is defined here as one that maximises the long term average per unit time profit of a combined measure of quality and quantity dependent sales revenue, minus inventory and backlog costs, in the presence of random plant failures and random repair durations.  相似文献   

4.
Production control policy and economic sampling plan design problems have been studied separately in previous research. This paper considers a joint production control policy and economic single sampling plan design for an unreliable batch manufacturing system. The production is controlled by a modified hedging point policy which consists of building and maintaining a safety stock of finished product to avoid shortages during corrective maintenance. The main objective of this paper is to determine simultaneously the economic production quantity, the optimal safety stock level and the economic sampling plan design which minimise the expected overall cost. A stochastic mathematical model is developed and solved using a simulation optimisation approach based on the response surface methodology. Simulation is used to imitate the complex dynamic and stochastic behaviour of processes as in the real-life industrial systems. The obtained results show clearly strong interactions between production quantity, inventory state and sampling plan design which confirm the necessity of jointly considering production and quality control parameters in an integrated model. Moreover, it is shown a significant impact of production system reliability on the economic sampling plan design and therefore on the quality of finished product delivered to consumers. Numerical example and sensitivity analyses are presented for illustrative purposes.  相似文献   

5.
In recent years, achieving high energy efficiency has become one of the primary goals in manufacturing, along with maintaining high productivity and quality. In many manufacturing systems, it is sometimes possible to temporarily switch off a machine to reserve energy, and switch it back on when a certain condition is met. Indeed, production control-based shop floor continuous improvement is recognised as one of the most cost-effective ways to achieve energy-efficient production. In this paper, we study serial production lines with Bernoulli machines and finite capacity buffers and assume that some of the machines in the line can be switched on and off during the production process according to a state-based feedback control policy. Mathematical models for the system under consideration are derived and analytical methods are developed for calculating the system performance measures during transients. Specifically, exact Markovian analysis is used for two- and three-machine lines in which the switch-on/off operations of only one machine is considered. For longer lines, the switch-on/off operations of multiple machines are considered and an aggregation-based approximation approach is applied to evaluate the system performance measures. Numerical experiments show that the method developed can be used to efficiently calculate the system’s performance with high accuracy.  相似文献   

6.
Production planning of final assembly systems is a challenging task, as the often fluctuating order volumes require flexible solutions. Besides, the calculated plans need to be robust against the process-level disturbances and stochastic nature of some parameters like manual processing times or machine availability. In the paper, a simulation-based optimisation method is proposed that utilises lower level shop floor data to calculate robust production plans for final assembly lines of a flexible, multi-stage production system. In order to minimise the idle times when executing the plans, the capacity control that specifies the proper operator–task assignments is also determined. The analysed multi-stage system is operated with a pull strategy, which means that the production at the final assembly lines generates demands for the preceding stages providing the assembled components. In order to guarantee the feasibility of the plans calculated for the final assembly lines, a decomposition approach is proposed to optimise the production plan of preceding stages. By this way, the robust production can be ensured resulting in reduced losses and overall production costs even though the system is exposed to changes and disturbances.  相似文献   

7.
Anionic, cationic and nonionic surfactants being frequently employed in the textile preparation process were subjected to H(2)O(2)/UV-C treatment. As a consequence of the considerable number of parameters affecting the H(2)O(2)/UV-C process, an experimental design methodology was used to mathematically describe and optimize the single and combined influences of the critical process variables treatment time, initial H(2)O(2)concentration and chemical oxygen demand (COD) on parent pollutant (surfactant) as well as organic carbon (COD and total organic carbon (TOC)) removal efficiencies. Multivariate analysis was based on two different photochemical treatment targets; (i) full oxidation/complete treatment of the surfactants or, alternatively, (ii) partial oxidation/pretreatment of the surfactants to comply with the legislative discharge requirements. According to the established polynomial regression models, the process independent variables "treatment time" (exerting a positive effect) and "initial COD content" (exerting a negative effect) played more significant roles in surfactant photodegradation than the process variable "initial H(2)O(2) concentration" under the studied experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号