首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A CNC machining operation is the outcome of the application of the integrated capabilities of various resources within the CNC machining centre. Part fixtures, clamping and other location mechanisms are essential subsets of CNC machining resources. Today, various fixturing techniques and attachments available in the market allow manufacturers to enhance their production capability without buying expensive machine tools. This technology-rich fixturing domain is detached while representing and exchanging machine tool resource information for making manufacturing decisions. The research work in this article utilises the STEP-NC compliant unified manufacturing resource model (UMRM) for representing fixtures in conjunction with the parent CNC machining centre. Thus, UMRM is enhanced in this context to represent various fixtures such as universal vises, chucks, pallets and auxiliary rotary tables among others. The major contribution of this article is the application of the extension of the UMRM approach for representing fixturing domain, which allows generic modelling of fixtures and loading devices in addition to machine workpiece and process modelling. This would enable the stage of automated process planning and manufacturing. The universal approach in representing resource information allows the data to be utilised for making a wide variety of manufacturing decisions.  相似文献   

2.
The Computer Numerical Control (CNC) machine is one of the most effective production facilities used in manufacturing industry. Determining the optimal machining parameters is essential in the machining process planning since the machining parameters significantly affect production cost and quality of machined parts. Previous studies involving machining optimization of turning operations concentrated primarily on developing machining models for bar components. Machined parts on the CNC lathes, however, typically have continuous forms. In this study, we formulate an optimization model for turned parts with continuous forms. Also, a stochastic optimization method based on the simulated annealing algorithm and the pattern search is applied to solve this machining optimization problem. Finally, the applications of the developed machining model and the proposed optimization algorithm are established through the numerical examples.  相似文献   

3.
Process planning, as a critical stage integrating the design and manufacturing phase in a manufacturing environment, has been automated to meet the needs for higher productivity and lower production cost. Being an input to various systems such as scheduling and routing, process planning results are of great importance in the manufacturing stage. Though feature extraction and sequence optimization have been given much attention, the process parameters are rarely dealt with. This paper focuses on the development of a new generative computer aided process planning (CAPP) framework for rotational components. The developed framework includes modules for feature extraction based on CAD application programming interfaces, determination of the optimum sequence and generation of optimum process parameters. The optimization of the machining operations is achieved using the evolutionary technique. The approach resulted in the reduction and prediction of machining time and cost. The framework is demonstrated with a case study.  相似文献   

4.
In machining process planning, selection of machining datum and allocation of machining tolerances are crucial as they directly affect the part quality and machining efficiency. This study explores the feasibility to build a mathematical model for computer aided process planning (CAPP) to find the optimal machining datum set and machining tolerances simultaneously for rotational parts. Tolerance chart and an efficient dimension chain tracing method are utilized to establish the relationship between machining datums and tolerances. A mixed-discrete nonlinear optimization model is formulated with the manufacturing cost as the objective function and blueprint tolerances and machine tool capabilities as constraints. A directed random search method, genetic algorithm (GA), is used to find optimum solutions. The computational results indicate that the proposed methodology is capable and robust in finding the optimal machining datum set and tolerances. The proposed model and solution procedure can be used as a building block for computer automated process planning.  相似文献   

5.
The ability to predict performance of manufacturing equipment during early stages of process planning is vital for improving efficiency of manufacturing processes. In the metal cutting industry, measurement of machining performance is usually carried out by collecting machine-monitoring data that record the machine tool’s actions (e.g. coordinates of axis location and power consumption). Understanding the impacts of process planning decisions is central to the enhancement of the machining performance. However, current methodologies lack the necessary models and tools to predict impacts of process planning decisions on the machining performance. This paper presents the development of a virtual machining model (called STEP2M model) that generates machine-monitoring data from process planning data. The STEP2M model builds upon a physical model-based analysis for the sources of energy on a machine tool, and adopts STEP-NC and MTConnect standardised interfaces to represent process planning and machine-monitoring data. We have developed a prototype system for 2-axis turning operation and validated the system by conducting an experiment using a Computer Numerical Control lathe. The virtual machining model presented in this paper enables process planners to analyse machining performance through virtual measurement and to perform interoperable data communication through standardised interfaces.  相似文献   

6.
文章介绍了可实用的CAD/CAPP/CAM集成系统。该系统是由机械产品设计人员,工艺人员和数控机床NC编程人员共同努力,在商品CAD/CAM软件Pro/ENGINEER平台上开发的。系统由三个子系统组成:零件信息识别子系统,CAPP子系统和自动CAM子系统。零件信息识别子系统从三维零件中提取零件信息,CAPP子系统分析零件信息,自动生成零件加工工序和工步,从刀具数据库中查询刀具及切削用量,并完成各工序的工步排序。自动CAM子系统根据CAPP的结果,自动生成Pro/ENGINEER的NC工步,经过NC仿真后  相似文献   

7.
The optimisation of machining parameters for machine tools using the criterion of maximum productivity rate is not a new problem – many unresolved issues remain. The intensification of machining processes leads to changes in the productivity rate; analytically defining optimal machining parameters for the maximum productivity rate in real-world manufacturing processes is, therefore, an important problem that needs to be addressed. This paper aims to formulate a mathematical model for the optimisation of cutting processes on machine tools based on the criterion of maximum productivity rate. The mathematical model is based on technological data, machining and reliability parameters of the machine tool units. Several practical applications are discussed.  相似文献   

8.
The paper describes process planning for order-based small batch sheet metal part manufacturing. In this domain, general purpose CNC machinery and standard tools are being used. An example of a process planning system is given and some areas of special interest are discussed in more detail. Process planning for sheet bending and tolerance reasoning are important and intricate tasks within process planning, whereas abstractions in design and nesting are important due to their relations with other manufacturing functions. In general, manufacturing functions tend to become increasingly intertwined and traditional boundaries become blurred. Sheet metal industries, customers and suppliers alike, can benefit from this.  相似文献   

9.
Since the first generation of Numerically Controlled (NC) machine tools was developed in the 1950s, there have been many developments which make today's NC machines completely unrecognizable from their early ancestors. Further developments, however, are now being significantly limited by the current programming language (ISO6983 or RS274D) that has been supporting NC manufacture since day one. Today a new standard, informally known as STEP-NC, is being used as the basis for development of the next generation of Computer Numerically Controlled (CNC) controller. This new standard is ISO 14649 and ISO 10303 AP 238. This standard gives CAM and CNC vendors the opportunity to integrate the capabilities of CAD/CAM systems with a new breed of intelligent CNC controllers, which have bi-directional communication of information representing standardized geometric and manufacturing data. This paper presents a comprehensive review of STEP-NC developments for a range of CNC processes. These developments include some major projects collaborated at the international level as well as those carried out by different groups of researchers in countries such as Germany, Switzerland, UK, Korea, USA and New Zealand. This paper also tries to portray a futuristic view of STEP-NC applications for CAD, CAPP, CAM and CNC integration, identifies the issues and challenges for STEP-NC, and provides a vision of a STEP-NC-compliant process chain supported by a product and manufacturing model.  相似文献   

10.
The technology of virtual metrology (VM) has been applied in the semiconductor industry to convert sampling inspection with metrology delay into real time and online total inspection. The purpose of this study is trying to apply VM for inspecting machining precision of machine tools. However, machining processes will cause severe vibrations that make process data collection, data cleaning, and feature extraction difficult to handle. Thus, the tasks of how to accurately segment essential parts of the raw process data from the original numerical-control file, how to effectively handle raw process/sensor data with low signal-to-noise ratios, and how to properly extract significant features from the segmented and clean raw process data are challenging issues for successfully applying VM to machine tools. These issues are judiciously addressed and successfully resolved in this paper. Testing results of machining standard workpieces and cellphone shells of two three-axis CNC machines show that the proposed approach of applying VM to accomplish total precision inspection of machine tools is promising.  相似文献   

11.
Load spectra of CNC machine tools are described in this paper; 112 CNC machine tools have been traced for 3 years. Data including machining parameters and conditions, drawings and NC programs of parts, process cards and specifications of each individual CNC machine tool are gathered. A database containing this information is designed. The loads of CNC machine tools are calculated and the distribution parameters of loads are estimated. A fuzzy multicriteria comprehensive evaluation method is applied to evaluate the fitness of the distribution model. This methodology lays a foundation for the reliability designs of CNC machine tools. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Today, the generality of computer-aided process planning (CAPP) systems and their standardization do not achieve satisfactory standards levels for industry. One of the major causes here is the difficulty of integration with computer-aided design applications, due mainly to the product model used. It is therefore necessary to identify models that are general with regard to the products, but at the same time suitable for CAPP. A product model suitable for CAPP must represent the product conceptually, enabling the development of process planning functions that operate with manufacturing concepts. It is therefore necessary to develop product information models using this philosophy. The present paper focuses on this problem and proposes an information system for representing the product for internal CAPP use. It is geared towards representing all of the part information (necessary for manufacturing) integrally with the machining features and under the same concept as these features. To this end, one of the main characteristics of the model is the absence of conventional geometric entities. The application domain of the model proposed is the assignment of processes and machines in machined parts. The GF-CAPP system has revealed that the advantages of using this type of product model in CAPP are its generality with regard to the product and the ease of developing functional procedures that are general, simple and independent.  相似文献   

13.
The use of multi-axis high-speed milling has increased in different industrial sectors such as automotive, aeronautical, and the manufacturing of complex moulds. This trend can be observed at the latest technical fairs and the catalogues of the main machine tool manufacturers. Furthermore, for machining impossible shapes, multi-axis machining introduces two main advantages. First it gives the option of performing all operations in only one set-up of the raw block, which can be a prismatic block or a near-to-net shape form. Second it offers the capability of setting the cutting speed, depth of cut and feed to optimize tool life and part quality.

However, multi-axis milling is a very complex process that requires special care in the CNC program preparation in the CAM stage, which is critical for a successful process. Thus, the use of a virtual machining simulation utility is highly recommended. Collisions, over-cuts, interferences and dangerous machine movements can be predicted and avoided. On the other hand, continuous variation of the tool can be used to optimize cutting parameters such as cutting forces. Final result is the minimization of tool deflection due to the cutting forces and, in this way, the precision and roughness of finished parts are improved.

In this paper a reliable method for multi-axis HSM is presented. This methodology is based on two aspects. First a cutting force estimation in order to get minimum cutting force tool-paths. Second a complete virtual simulation to ensure a collision-free tool-path. A final objective is to generate reliable CNC programs. In this manner, the CAM becomes the centre of gravity of the machining planning procedure.

The methodology has been applied to the machining of two plastic moulds in hardened steel (32 HRC), a 7075-T6 aluminium honeycomb part for aeronautical purposes and a 65 HRC AISI 1.2379 part. Times, tolerances and surface roughness have been measured to check the success of the purposed methodology.  相似文献   

14.
In the discrete part manufacturing industry, engineers develop process plans by selecting appropriate machining processes and production equipment to ensure the quality of finished components. The decisions in process planning are usually made based on personal experience and the verification of process plans is based on physical trial-and-error runs, which is costly and time-consuming. This paper proposes to verify process plans by predicting machining tolerances via Monte Carlo simulation. The basic idea is to use a set of discrete sample points to represent workpiece geometry. The changes of their spatial position are simulated and tracked as the workpiece undergoes a series of machining processes. Virtual inspections are then conducted to determine the dimensional and geometric tolerances of the machined component. Machining tolerance prediction is completed through: (1) manufacturing error synthesis, and (2) error propagation in multiple operations. In this way, engineers can quickly screen alternative process plans, spot the root error causes, and improve their decisions. Therefore, physical trial-and-error runs can be reduced, if not eliminated, resulting in significant savings in both time and costs.  相似文献   

15.
CNC machine have a fast development and is widely used in China. Generally, CNC machine tool, includs CNC lathes and CNC milling machine. CNC machine tool is a necessary tool for machining. It plays an important role in the mechanical design and machining fields. CNC machine tool is mainly composed of two parts of the machine body and the computer control system. Mechanical equipment failures usually related information such as vibration, sound, pressure, temperature performance. CNC machine tool vibration monitoring system with piezoelectric accelerometer, the eddy current displacement sensor, signal amplifier, signal conditioning modules. We can take an advantage of the CNC machine tool vibration monitoring system for vibration monitoring and fault diagnosis of CNC machine tools.  相似文献   

16.
精密长光栅作为高档数控机床中的核心部件,其制造能力和精度直接决定高精密机床的制造水平.本文对纳米滚压印技术制造长光栅中的核心部件——圆柱母光栅的制造开展研究,建立了高精度的母光栅刻划制造平台,保证了母光栅制造的精度要求;分析了微尺度毛刺的形成机理和抑制方法,对母光栅材料选择及微尺度刻划工艺参数进行了优化,实现了直径110mm,周期分别为20μm、10μm和4μm整圈圆柱母光栅的高精度微刻划制造.母光栅刻划总条数为数万条,4μm周期母光栅连续刻划时间超过62h,最终实现母光栅的首尾拼接误差控制小于300mm.另外,针对滚压印加工中的填充问题,利用聚焦离子束(FIB)技术制备了V形、梯形等形状金刚石刀具,获得了良好的光栅压印结果.  相似文献   

17.
数控机床热误差的建模与预补偿   总被引:9,自引:0,他引:9  
研究了数控机床热误差的预补偿方法。建立了基于主轴转速的热误差自回归模型,从而不需要测量机床的温度场就可以预测热误差。在加工前通过修改工作的数控加工程度即可进行补偿,大大简化了误差补偿过程。可应用于中等精度的数控机床。  相似文献   

18.
An efficient real-time Non-Uniform Rational B-Spline (NURBS) curve interpolator for high-speed and high-accuracy curve machining is developed and implemented, which considers the confined contour error, acceleration/deceleration (ACC/DEC) planning and the machine dynamic response simultaneously. A practical method is proposed to adjust the feed rate to the curvature radius of NURBS curves to achieve higher machining precision. However, at the sharp corner of the curves, the feed rate fluctuation might result in large impacts to machine tools. The offline pre-interpolation for sharp corners is presented. The feed rate is reduced in advance according with the machine's acceleration capability as well as satisfying the confined contour error. The velocity profile can be chosen dynamically to meet the requirements of the machining process by means of flexible ACC/DEC planning. In addition, a new strategy based on the geometrical properties of NURBS curves is suggested to predict the deceleration point. Therefore, the process of acceleration and deceleration is so smooth that it can satisfy the need of the machining process. This NURBS interpolator has been validated on a CNC system, which greatly improves machining accuracy for both position and velocity control.  相似文献   

19.
Parallel numerically controlled machines can perform multiple machining operations simultaneously using combinations of interacting workholding and tool holding devices. One type of parallel machine, the Mill/Turn, also has the ability to perform both turning and milling operations in the same setup. These machines, in addition to being suitable for large volume machining, also have the potential for efficiently producing small batch sizes. Consequently, Mill/Turns can be used as a rapid prototyping tool. One of the major hurdles to integrating Mill/Turns into manufacturing environments is the absence of computer-aided processing planning systems. This problem is more acute in the parallel-machining domain because process plans for parallel machining are more complicated than their sequential counterparts. In this paper we discuss various aspects of parallel machining that influence the generation of process plans, and describe a process planner that uses a genetic algorithm for sequencing operations. Implementation results are also included.  相似文献   

20.
With the introduction of computer-aided tools, traditional manufacturing tasks such as design, machining and inspection are now highly automated. However, due to the complexity and enormous knowledge involved in each process, most of these activities are still dealt with separately. Recent development of concurrent engineering emphasizes the importance of bringing manufacturing knowledge into the early design stage for optimum product and process design. In this paper, a knowledge-based CAD/CAM system which integrates process planning for finish milling and dimensional inspection of sculptured surfaces in die and mould manufacturing is presented. Optimum production plans are determined by minimizing the integral cost of machining and inspection. NC path generation and inspection planning are then verified by dynamic geometric simulations which provide the designer with the evaluations of machinability and inspectability. The implied significance is that strong inter-dependency may exist among various design life-cycle activities and that optimum solutions can be obtained by taking into account the interactions of the life-cycle events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号