首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates an energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines (HFSP-UPM) with the energy-saving strategy of turning off and on. We first analyse the energy consumption of HFSP-UPM and formulate five mixed integer linear programming (MILP) models based on two different modelling ideas namely idle time and idle energy. All the models are compared both in size and computational complexities. The results show that MILP models based on different modelling ideas vary dramatically in both size and computational complexities. HFSP-UPM is NP-Hard, thus, an improved genetic algorithm (IGA) is proposed. Specifically, a new energy-conscious decoding method is designed in IGA. To evaluate the proposed IGA, comparative experiments of different-sized instances are conducted. The results demonstrate that the IGA is more effective than the genetic algorithm (GA), simulating annealing algorithm (SA) and migrating birds optimisation algorithm (MBO). Compared with the best MILP model, the IGA can get the solution that is close to an optimal solution with the gap of no more than 2.17% for small-scale instances. For large-scale instances, the IGA can get a better solution than the best MILP model within no more than 10% of the running time of the best MILP model.  相似文献   

2.
The purpose of this research is to solve flexible job-shop scheduling problems with ‘AND’/‘OR’ precedence constraints in the operations. We first formulate the problem as a Mixed-Integer Linear Program (MILP). The MILP can be used to compute optimal solutions for small-sized problems. We also developed a heuristic algorithm that can obtain a good solution for the problem regardless of its size. Moreover, we have developed a representation and schedule builder that always produces a legal and feasible solution for the problem, and developed genetic and tabu search algorithms based on the proposed schedule builder. The results of the computational experiments show that the developed meta-heuristics are very effective.  相似文献   

3.
The integration of process planning and scheduling is important for an efficient utilisation of manufacturing resources. In general, there are two types of models for this problem. Although some MILP models have been reported, most existing models belong to the first type and they cannot realise a true integration of process planning and scheduling. Especially, they are completely powerless to deal with the cases where jobs are expressed by network graphs because generating all the process plans from a network graph is difficult and inefficient. The network graph-specific models belong to the other type, and they have seldom been deliberated on. In this research, some novel MILP models for integrated process planning and scheduling in a job shop flexible manufacturing system are developed. By introducing some network graph-oriented constraints to accommodate different operation permutations, the proposed models are able to express and utilise flexibilities contained in network graphs, and hence have the power to solve network graph-based instances. The established models have been tested on typical test bed instances to verify their correctness. Computational results show that this research achieves the anticipant purpose: the proposed models are capable of solving network graph-based instances.  相似文献   

4.
The purpose of this research is to solve a general job shop problem with alternative machine routings. We consider four performance measures: mean flow time, makespan, maximum lateness, and total absolute deviation from the due dates. We first develop mixed-integer linear programming (MILP) formulations for the problems. The MILP formulations can be used either to compute optimal solutions for small-sized problems or to test the performance of existing heuristic algorithms. In addition, we have developed a genetic algorithm that can be used to generate relatively good solutions quickly. Further, computational experiments have been performed to compare the solution of the MILP formulations with that of existing algorithms.  相似文献   

5.
The Lexicographic Bottleneck Assembly Line Balancing Problem (LB-ALBP) is a new assembly-line balancing problem recently defined in the literature. The LB-ALBP hierarchically minimises the workload of the most heavily loaded workstation, followed by the workload of the second most heavily loaded workstation, followed by the workload of the third most heavily loaded workstation, and so on. The original study presents two mixed-integer linear programming (MILP) models designed to solve the LB-ALBP optimally, together with three heuristic procedures based on these MILPs. In this paper, we propose and test new algorithms that combine a heuristic procedure for obtaining an initial solution and several local search procedures, which are an improvement upon the heuristic procedures published to date.  相似文献   

6.
With the rapid development of computer technology and related softwares for mathematical models, mathematical modelling of scheduling problems is receiving growing attention from researchers. In this work, the hybrid flow shop scheduling problem with unrelated parallel machines (HFSP-UPM) with the objective aimed to minimise the makespan is studied. According to the characteristics of the HFSP-UPM, eight mixed integer linear programming (MILP) models are formulated in order to obtain optimal solutions based on different modelling ideas. Then, these models are extended to solve HFSP-UPM with sequence-dependent setup times (HFSP-UPM-SDST), no-wait HFSP-UPM (HFSP-UPM-NW) and HFSP-UPM with blocking (HFSP-UPM-B). All the proposed models and the existing model are detailedly compared and evaluated under three aspects namely modelling process, size complexity and computational complexity. Numerical experiments show that MILP models dependent on diverse modelling ideas perform very differently. The model developed based on stage precedence is the best one and should be given preference in future applications. In addition, the proposed models of HFSP-UPM-NW and HFSP-UPM-B improve several best known solutions for the test instances in the existing literature.  相似文献   

7.
As a key part of computer integrated manufacturing (CIM), shop floor control systems (SFCS) play an essential role in the effective operations of a shop floor. The development of SFCSs is an extremely complex process, given the requirements for synchronisation and coordination. Object-oriented methods offer a promising solution to develop a reusable, maintainable and interoperable SFCS. However, current O-O practices for developing SFCSs are hindered by proprietary representations, which may lead to problems with the portability and interoperability of models. UML, as an industrial standard for O-O notations, has been widely accepted by practitioners to describe static and dynamic parts of a complex system. From the perspective of software engineering, UML offers a variety of standard notations to support the full life-cycle of system development. In this paper, an approach to developing an SFCS using UML through analysis, design and implementation phases is presented, based on the three level hierarchical architecture. An example workstation is studied as an illustration to clarify the proposed approach. In addition to the reusability, portability and maintainability, the presented UML-based development enhances the efficiencies and qualities of SFCS development, considering a wide range of mature tool supports (such as Rational Rose) for UML are available.  相似文献   

8.
In this paper, a multiple period replenishment problem based on (s, S) policy is investigated for a supply chain (SC) comprising one retailer and one manufacturer with uncertain demand. Novel mixed-integer linear programming (MILP) models are developed for centralised and decentralised decision-making modes using two-stage stochastic programming. To compare these decision-making modes, a Monte Carlo simulation is applied to the optimization models’ policies. To deal with demand uncertainty, scenarios are generated using Latin Hypercube Sampling method and their number is reduced by a scenario reduction technique. In large test problems, where CPLEX solver is not able to reach an optimal solution in the centralised model, evolutionary strategies (ES) and imperialist competitive algorithm (ICA) are applied to find near optimal solutions. Sensitivity analysis is conducted to show the performance of the proposed mathematical models. Moreover, it is demonstrated that both ES and ICA provide acceptable solutions compared to the exact solutions of the MILP model. Finally, the main parameters affecting difference between profits of centralised and decentralised SCs are investigated using the simulation method.  相似文献   

9.
As a result of an increasingly competitive market, companies must find ways to organize their activities regarding their economic outcome. An important feature in this context involves transportation operations, usually considered one of the major bottlenecks in the production chain. While delays imply loss of time and lack of resources, deliveries ahead of the deadlines may cause excess of inventories. Therefore, every company must pursue efficient transportation schedules within their operational planning. This work addresses short-term crude oil scheduling problems in a distribution complex that contains ports, refineries and a pipeline infrastructure capable of transferring oil from the former to the latter. The ports comprise piers, which receive vessels for discharging, storage tanks and a network that connects each other. The refineries have their own storage infrastructure, modeled as a large storage unit, along with crude distillation units, considered as constant level consumers. The problem involves a number of other issues, including intermediate storage, settling tasks and allocation of crude oil by its qualitative characteristics. A decomposition strategy based on large-scale mixed-integer linear programming (MILP) continuous-time models is developed. First, an MILP model that considers an aggregate representation for the pipeline and intermediate storage infrastructure is proposed. Decision variables involve the assignment of oil tankers to piers as well as tanker unloading and pipeline loading operations. The solution of this model provides the initial conditions for MILP models that represent the pipeline and intermediate storage infrastructure at a detailed level. Algorithms based on the LP-based branch-and-bound method are employed. Results from a port scenario of 13 tankers, 4 piers, 14 crude types, 18 storage tanks and 2 pipelines were obtained in approximately 90 minutes from an MILP problem containing 1996 continuous variables, 1039 binary variables and 7203 constraints.  相似文献   

10.
以NP-难的最小化时间表长为目标的混合流水车间调度问题为研究对象。把工件在第1阶段开始加工的排序问题转化为旅行商问题,采用蚁群系统求得初始排序;在第1阶段后各阶段采用工件先到先服务规则选择工件、最先空闲机器优先规则选择机器以构建初始工件的机器指派与排序;充分利用已知的机器布局和工件加工时间特点,确定工件加工瓶颈阶段,并以此为基础对工件的机器指派与排序进行改进。用Carlier和Neron设计的Benchmark算例仿真后与著名的NEH算法比较,表明这种算法是有效的。  相似文献   

11.
施云辉  郭创新  丁筱 《发电技术》2020,41(2):118-169
新能源和负荷的不确定性给综合能源系统(integrated energy system,IES)运行带来挑战。首先,基于线性形式的能源集线器模型,对园区IES进行了建模。其次,构建了基于仿射可调鲁棒优化的园区IES两阶段经济调度模型,通过该模型可求得机组的启停及基准出力,以满足不考虑可再生能源出力的能量平衡要求,并求得机组的参与因子,使得调度方案对可再生能源出力不确定集下的任意场景均可行。最后,将该模型转化为混合整数线性规划模型(mixed integer linear programming,MILP)进行求解。算例分析结果表明:通过可调鲁棒优化的经济调度方法所求得的调度方案较经典鲁棒优化有更好的经济性与鲁棒性。  相似文献   

12.
Yao-Huei Huang 《工程优选》2018,50(10):1789-1809
This article addresses the three-dimensional open-dimension rectangular packing problem (3D-ODRPP), which aims to pack a given set of unequal-size rectangular boxes within an enveloping rectangular space such that the volume of the occupied space is minimized. Even though the studied 3D-ODRPP is NP hard, the development of sophisticated global optimization methods has been stimulated. The mathematical programming formulation for the 3D-ODRPP has evolved into an effective and efficient mixed-integer linear programming (MILP) model. This study proposes an advanced exact scheme yielding a guaranteed global optimal solution given that all the instance data are non-negative rational numbers. The developed MILP retains not only fewer variables but also fewer constraints than the state-of-the-art models. The superior effectiveness and efficiency of the developed scheme are demonstrated with numerical experiments, where two sets of benchmark instances from references, real-world instances and instances with rational data are included.  相似文献   

13.
The issue of energy has emerged as one of the greatest challenges facing mankind. In an industrial perspective, the development of site utility systems (generally combined heat and power (CHP) systems) for the generation and management of utilities provides a great potential source for energy savings. However, in most industrial sites, a master–slave relationship usually governs this kind of system and limits the potential operating capacity of CHP. To improve the decision-making process, Agha et al. (2010. Integrated production and utility system approach for optimising industrial unit operation. Energy, 35, 611–627) have proposed an integrated approach that carries out simultaneous and consistent scheduling of batch production plants and site utility systems. The modelling of the problem relies on a mixed integer linear programming (MILP) formulation. Nevertheless, although it is a powerful mathematical tool, it still remains difficult to use for non-expert engineers. In this framework, a graphical formalism based on existing representations (STN, RTN) has been developed: the extended resource task network (ERTN). Combined with an efficient and generic MILP formulation, it permits various kinds of industrial problems, including production and consumption of utility flows to be modelled homogenously. This paper focuses on the semantic elements of the ERTN formalism and illustrates their use through representative examples.  相似文献   

14.
This paper considers a slab reallocation problem arising from operations planning in the steel industry. The problem involves reallocating steel slabs to customer orders to improve the utilisation of slabs and the level of customer satisfaction. It can be viewed as an extension of a multiple knapsack problem. We firstly formulate the problem as an integer nonlinear programming (INLP) model. With variable replacement, the INLP model is then transformed into a mixed integer linear programming (MILP) model, which can be solved to optimality by MILP optimisers for very small instances. To obtain satisfactory solutions efficiently for practical-sized instances, a heuristic algorithm based on tabu search (TS) is proposed. The algorithm employs multiple neighbourhoods including swap, insertion and ejection chain in local search, and adopts solution space decomposition to speed up computation. In the ejection chain neighbourhood, a new and more effective search method is also proposed to take advantage of the structural properties of the problem. Computational experiments on real data from an advanced iron and steel company in China show that the algorithm generates very good results within a short time. Based on the model and solution approach, a decision support system has been developed and implemented in the company.  相似文献   

15.
A main feature of quality function deployment (QFD) planning process is to determine target values for the design requirements (DRs) of a product, with a view to achieving a higher level of overall customer satisfaction. However, in real world applications, values of DRs are often discrete instead of continuous. Therefore, a mixed integer linear programming (MILP) model considering discrete data is suggested. As opposed to the existing literature, the fulfilment levels of DRs are assumed to have a piece-wise linear relationship with cost; because, constraints of technology and resource rarely provides a linear relationship in manufacturing systems. In the proposed MILP model, we considered customer satisfaction as the only goal. But, QFD process may be necessary to optimise cost and technical difficulty goals as well as customer satisfaction. Therefore, by developing the MILP model with multi-objective decision making (MODM) approach, a novel mixed integer goal programming (MIGP) model is proposed to optimise these goals simultaneously. Finally, MILP model solution turns out to be a more realistic approach to real applications because piece-wise linear relationship is taken into account. The solution of MIGP model provided different alternative results to decision makers according to usage of the lexicographic goal programming (LGP) approach. The applicability of the proposed models in practice is demonstrated with a washing machine development problem.  相似文献   

16.
This paper addresses the problem of scheduling, on a two-machine flow shop, a set of unit-time operations subject to the constraints that some conflicting jobs cannot be scheduled simultaneously on different machines. In the context of our study, these conflicts are modelled by general graphs. The problem of minimising the maximum completion time (makespan) is known to be NP-hard in the strong sense. We propose a mixed-integer linear programming (MILP) model. Then, we develop a branch and bound algorithm based on new lower and upper bound procedures. We further provide a computer simulation to measure the performance of the proposed approaches. The computational results show that the branch and bound algorithm outperforms the MILP model and can solve instances of size up to 20,000 jobs.  相似文献   

17.
This paper presents a new integer linear programming (ILP) model to schedule flexible job shop, discrete parts manufacturing industries that operate on a make-to-order basis. The model considers groups of parallel homogeneous machines, limited intermediate buffers and negligible set-up effects. Orders consist of a number of discrete units to be produced and follow one of a given number of processing routes. The model allows re-circulation to take place, an important issue in practice that has received scant treatment in the scheduling literature. Good solution times were obtained using commercial mixed-integer linear programming (MILP) software to solve realistic examples of flexible job shops to optimality. This supports the claim that recent advances in computational power and MILP solution algorithms are making this approach competitive with others traditionally applied in job shop scheduling.  相似文献   

18.
The classic assembly line balancing problem (ALBP) basically consists of assigning a set of tasks to a group of workstations while maintaining the tasks’ precedence relations. When the objective is to minimise the number of workstations m for a given cycle time CT, the problem is referred to as ALBP-1; if the objective is to minimise CT given m, then the problem is called ALBP-2. The only objective in ALBP-2 is to minimise CT, i.e., the workload of the most heavily loaded workstation (the bottleneck). However, considering the second-biggest, third-biggest, etc. workloads, can be important. Distributing a workload among six workstations as 10, 10, 10, 4, 3, 3, is not the same as distributing it as 10, 6, 6, 6, 6, 6. The CT value is the same, but the second distribution is beyond question more reliable and balanced. In this paper, we present and formalise a new assembly line balancing problem: the lexicographic bottleneck assembly line balancing problem (LB-ALBP). The LB-ALBP hierarchically minimises the workload of the most heavily loaded workstation (CT), followed by the workload of the second most heavily loaded workstation, followed by the workload of the third most heavily loaded workstation, and so on. We present two mixed-integer linear programming (MILP) models designed to solve the LB-ALBP optimally, together with three heuristic procedures based on these MILPs.  相似文献   

19.
针对模具制造过程的特点,在工件不同时到达的情况下,研究了前阶段带有成组约束的两阶段柔性同序加工车间的调度问题,建立了目标函数为最小化最大完成时间的调度数学模型.基于Potts的RJ’算法提出解决此类问题的启发式算法,并将该算法应用到轮胎模具企业的生产实例中,通过仿真说明数学模型和求解方法的可靠性和有效性.  相似文献   

20.
Many fast moving consumers good manufacturing companies produce a moderate number of intermediates that are combined in many different ways to generate an enormous variety of end products. To do that, such companies usually run continuous production plants in a make-to-stock environment. The process structure includes a fabrication area yielding basic intermediates that are stocked in a large middle storage space, and a packing sector where finished products usually comprising several intermediates are manufactured. Intermediates all undergo the same sequence of processing stages and the production of any campaign is sequentially allocated to an ordered set of end products. An MILP continuous time scheduling problem formulation handling independently assignment and sequencing decisions and considering sequence-dependent setup times and specific due dates for export orders has been developed. The problem objective is to meet all end-product demands at minimum make-span. The proposed model is able to account for assorted products, multiple campaigns for a particular intermediate even at the same unit and the consecutive allocation of an intermediate campaign to different finished products. Moreover, it can easily embed powerful preordering rules to yielding reduced MILP formulations so as to tackle real-world industrial problems at low computational cost. The approach has been successfully applied to large-scale industrial examples. RID="*" ID="*" The authors acknowledge financial support from FONCYT under Grant 14-07004, and from “Universidad Nacional del Litoral” under CAI+D 121. Correspondence to: J. Cerdá  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号