首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
F. Niakan  M. Mohammadi 《工程优选》2013,45(12):1670-1688
This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.  相似文献   

2.
The double exponentially weighted moving average (EWMA) controller is a popular algorithm for on-line quality control of semiconductor manufacturing processes. The performance of the closed-loop system hinges on the adequacy of the two weight parameters of the double EWMA equations. In 2004, Su and Hsu presented an approach based on the neural technique for ‘on-line’ tuning the weight of the single EWMA equation in the single-input single-output (SISO) system. The present paper extends the neural network on-line tuning scheme to the double EWMA controller for the non-squared multiple-input multiple-output (MIMO) system, and validates the control performance by means of a simulated chemical–mechanical planarization (CMP) process in semiconductor manufacturing. Both linear and non-linear equipment models are considered to evaluate the proposed controller, coupling with the deterministic drift, the Gaussian noise and the first-order integrated moving average (IMA) disturbance. It has been shown from a variety of simulation studies that the proposed method exhibits quite competitive control performance as compared with the previous control system. The other merit of the proposed approach is that the tuning system, if sufficient training in a neural network is available, can be practicably applied to complex semiconductor processes without undue difficulty.  相似文献   

3.
The issue of energy has emerged as one of the greatest challenges facing mankind. In an industrial perspective, the development of site utility systems (generally combined heat and power (CHP) systems) for the generation and management of utilities provides a great potential source for energy savings. However, in most industrial sites, a master–slave relationship usually governs this kind of system and limits the potential operating capacity of CHP. To improve the decision-making process, Agha et al. (2010. Integrated production and utility system approach for optimising industrial unit operation. Energy, 35, 611–627) have proposed an integrated approach that carries out simultaneous and consistent scheduling of batch production plants and site utility systems. The modelling of the problem relies on a mixed integer linear programming (MILP) formulation. Nevertheless, although it is a powerful mathematical tool, it still remains difficult to use for non-expert engineers. In this framework, a graphical formalism based on existing representations (STN, RTN) has been developed: the extended resource task network (ERTN). Combined with an efficient and generic MILP formulation, it permits various kinds of industrial problems, including production and consumption of utility flows to be modelled homogenously. This paper focuses on the semantic elements of the ERTN formalism and illustrates their use through representative examples.  相似文献   

4.
This study aims at improving the effectiveness of Quality function deployment (QFD) in handling the vague, subjective and limited information. QFD has long been recognised as an efficient planning and problem-solving tool which can translate customer requirements (CRs) into the technical attributes of product or service. However, in the traditional QFD analysis, the vague and subjective information often lead to inaccurate priority. In order to solve this problem, a novel group decision approach for prioritising more rationally the technical attributes is proposed. Basically, two stages of analysis are described: the computation of CR importance and the prioritising the technical attributes with a hybrid approach based on a rough set theory (RST) and grey relational analysis (GRA). The approach integrates the strength of RST in handling vagueness with less priori information and the merit of GRA in structuring analytical framework and discovering necessary information of the data interactions. Finally, an application in industrial service design for compressor rotor is presented to demonstrate the potential of the approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号