共查询到18条相似文献,搜索用时 62 毫秒
1.
基于项目属性的用户聚类协同过滤推荐算法 总被引:1,自引:0,他引:1
协同过滤推荐算法是个性化推荐服务系统的关键技术,由于项目空间上用户评分数据的极端稀疏性,传统推荐系统中的用户相似度量算法开销较大并且无法保证项目推荐精度.通过对共同感兴趣的项目属性的相似用户进行聚类,构建了不同项目评价的用户相似性,设计了一种优化的协同过滤推荐算法.实验结果表明,该算法能够有效避免由于数据稀疏性带来的弊端,提高了系统的推荐质量. 相似文献
2.
基于项目特征聚类的协同过滤推荐算法 总被引:1,自引:0,他引:1
提出基于项目特征聚类的Item-based协同过滤推荐算法.该算法首先根据项目的属性特征对项目进行聚类,形成其特征相似群,然后采用一种基于预评分的相似性度量方法计算目标项的最近邻居,最终产生推荐.经实验验证该算法可以有效解决用户评分数据稀疏性和冷启动的难题,而且可以显著提高系统推荐质量. 相似文献
3.
4.
协同过滤为个性化推荐解决信息过载问题提供了方案,然而也存在着数据的稀疏性、可扩展性等影响推荐质量的关键问题.我们提出了一种基于奇异值分解(SVD)与模糊聚类的协同过滤推荐算法,通过引用物理学上狭义相对论中能量守恒的方法以保留总体特征值的数目,较为准确地确定降维维度,实现对原始数据的降维及其数据填充.另外,再运用模糊聚类的方法将相似用户进行聚类,从而达到减少邻居用户搜索范围的目的.在MovieLens与2013年百度电影推荐系统比赛等不同数据集上的实验结果表明,该算法能够提高推荐质量. 相似文献
5.
6.
基于项目聚类的协同过滤推荐算法 总被引:49,自引:0,他引:49
推荐系统是电子商务中最重要的技术之一 ,协同过滤是推荐系统中采用最为广泛也是最成功的推荐技术 .随着电子商务系统用户数目和商品数目日益增加 ,在整个用户空间上寻找目标用户的最近邻居非常耗时 ,导致推荐系统的实时性要求难以保证 .针对上述问题 ,本文提出了一种基于项目聚类的协同过滤推荐算法 ,根据用户对项目评分的相似性对项目进行聚类 ,生成相应的聚类中心 ,在此基础上计算目标项目与聚类中心的相似性 ,从而只需要在与目标项目最相似的若干个聚类中就能寻找到目标项目的大部分最近邻居并产生推荐列表 .实验结果表明 ,本算法可以有效提高推荐系统的实时响应速度 相似文献
7.
推荐系统通过建立用户和信息产品之间的二元关系,利用用户行为产生的数据挖掘每个用户感兴趣的对象并进行推荐,基于用户的协同过滤是近年来的主流办法,但存在一定局限性:推荐时需要考虑全部用户,而单个用户往往只与少部分用户类似。为了解决这个问题,提出了基于改进Canopy聚类的协同过滤推荐算法,将用户模型数据密度、距离与用户活跃度结合,计算用户数据权值,对用户模型数据进行聚类。由于结合了Canopy的聚类思想,同一用户可以属于不同的类,符合用户可能对多领域感兴趣的情况。最后对每个Canopy中的用户进行相应的推荐,根据聚类结果与用户评分预测用户可能感兴趣的对象。通过在数据集MovieLens和million songs上与对比算法进行MAE、RMSE、NDGG三个指标的比较,验证了该算法能显著提高推荐系统预测与推荐的准确度。 相似文献
8.
协同过滤算法在个性化推荐系统中应用广泛,为保证其在用户规模扩大的同时可以保持推荐的高效性和准确性,设计了一种基于PCA降维和二分K-means聚类的协同过滤推荐算法PK-CF。该算法为解决用户-项目评分矩阵极度稀疏造成的相似度计算误差的问题,采用主成分分析法对用户-项目评分矩阵进行降维,去除含信息量少的维度,只保留最能代表用户特征的维度;为解决协同过滤算法在系统规模庞大情况下的相似度计算时耗问题,通过在降维后的低维向量空间上进行二分K-means聚类来减小目标用户最近邻的搜索范围。在MovieLens数据集上对传统协同过滤算法、基于K-means聚类的协同过滤算法及PK-CF算法进行性能测试的结果表明:PK-CF算法不仅能有效地提高推荐结果的准确率与召回率,而且具有较高的时间效率。 相似文献
9.
针对基于内存的协同过滤算法在线计算量较大,数据稀疏且可扩展性较低的缺点,本文提出了一种基于SVD矩阵填充技术的K-means聚类协同过滤算法。本算法首先利用SVD降维方法对原始的高维稀疏矩阵进行预测填充,得到一个没有缺失值的评分矩阵,而后利用K-means聚类在填充完整的数据上对用户进行聚类,从而对完成对测试集上未知评分进行预测。该算法利用用户与项目之间的潜在关系克服了稀疏性问题,同时保留了聚类方法可离线建模、可扩展性好等优点。实验结果表明,该算法获得了更好的预测性能,同时具有良好的可扩展性。 相似文献
10.
根据目前电子商务网站中商品个性化推荐的现状,重点分析了比较常用的一种推荐方法——协同过滤推荐方法,发现了目前协同过滤算法在应用中所面临的挑战和问题,主要包括:推荐质量低、推荐效率低、数据稀疏性、冷启动等问题。针对这些问题本文提出了一种基于用户兴趣度的聚类分析协同过滤算法,有效的解决了目前算法中存在的数据稀疏性等问题,通过实验数据的分析对比,证明了算法的合理性和有效性。 相似文献
11.
针对传统的基于项目的协同过滤推荐算法中项目相似度的计算上存在的缺陷,提出一种基于多层次项目相似度的协同过滤推荐(MLCF)算法。利用多维度启发式方法分析用户行为记录,从共同用户集、用户活跃度、项目得分时效和项目得分4个方面综合分析项目之间的相似程度,并在此基础上,设计多层次项目相似度计算方法。实验结果表明,基于多层次项目相似度的推荐算法相对于传统的基于项目的协同过滤推荐算法具有较高的推荐准确率、召回率和较低的平均绝对误差值。 相似文献
12.
13.
标签作为Web 2.0时代信息分类和检索的有效方式,已经成为近年的热点研究对象。标签推荐系统旨在利用标签数据为用户提供个性化推荐。现有的基于标签的推荐方法在预测用户对物品的兴趣度时往往倾向于赋予热门标签及其对应的热门物品较大的权重,导致权重偏差,降低了推荐结果的新颖性,未能充分反映用户个性化的兴趣。针对上述问题,定义了标签熵的概念来度量标签的不确定性,提出了标签熵特征表示的协同过滤个性化推荐算法。该算法通过引入标签熵来解决权重偏差问题,利用三分图形式描述用户-标签-项目之间的关系;构建基于标签熵特征表示的用户和项目特征表示,并通过特征相似性度量方法计算项目的相似性;最后利用用户标签行为和项目的相似性线性组合预测用户对项目的偏好值,并根据预测偏好值排序生成最终的推荐列表。在Last.fm数据集上的实验结果表明,该方法能够提高推荐准确性和新颖性,满足用户的个性化需求。 相似文献
14.
15.
基于项目聚类的全局最近邻的协同过滤算法 总被引:1,自引:0,他引:1
用户评分数据极端稀疏的情况下,传统相似性度量方法存在弊端,导致推荐系统的推荐质量急剧下降。针对
此问题,提出了一种基于项目聚类的全局最近部的协同过滤算法。该算法根据项目之间的相似性进行聚类,使得相似
性较高的项目聚成一类,在项目聚类集的基础上,计算用户的局部相似度,使用一种新的最近部用户全局相似度作为
衡量用户间相似性的标准;其次,给出了一种利用重叠度因子来调节局部相似度的方法,以更准确地刻画用户之间的
相似性。实验结果表明,该算法可以提升预测结果的准确性,提高推荐质量,特别是在数据较为稀疏时,改善尤为明
显。 相似文献
16.
基于标签和协同过滤的个性化资源推荐 总被引:1,自引:0,他引:1
传统的协同过滤算法以用户评分体现用户兴趣偏好及资源相似度,忽视了用户、资源自身的特征,并且对稀疏数据和新资源的推荐质量明显下降。在Web2.0时代下,标签可被用户依个人偏好进行自由资源标注。因此,提出了基于标签和协同过滤的推荐算法。其基本思想是将标签作为体现用户兴趣偏好和资源特征的信息,依据用户、标签及资源的多维关系生成用户及资源的标签特征向量,并计算用户对资源的偏好程度和资源相似度,然后基于用户的历史行为预测用户对其他资源的偏好值,最后依据预测偏好值排序产生Top-N推荐结果。通过与传统的协同过滤算法的比较,验证了本算法能有效缓解数据的稀疏性,解决推荐的冷启动问题,提升推荐的准确性,获得更好的推荐效果。 相似文献
17.
标签推荐系统旨在利用标签数据为用户提供个性化推荐。已有的基于标签的推荐方法往往忽视了用户和资源本身的特征,而且在相似性度量时仅针对项目相似性或用户相似性进行计算,并未充分考虑二者之间的有效融合,推荐结果的准确性较低。为了解决上述问题,将标签信息融入到结合用户相似性和项目相似性的协同过滤中,提出融合标签特征与相似性的协同过滤个性化推荐方法。该方法在充分考虑用户、项目以及标签信息的基础上,利用二维矩阵来定义用户-标签以及标签-项目之间的行为。构建用户和项目的标签特征表示,通过基于标签特征的相似性度量方法计算用户相似性和项目相似性。基于用户标签行为和用户与项目的相似性线性组合来预测用户对项目的偏好值,并根据预测偏好值排序,生成最终的推荐列表。在Last.fm数据集上的实验结果表明,该方法能够提高推荐的准确度,满足用户的个性化需求。 相似文献
18.