首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
ABSTRACT

Due to the layer stacking inherent in traditional three-axis material extrusion (ME) additive manufacturing processes, a part's mechanical strength is limited in the print direction due to weaker interlayer bond strength. Often, this requires compromise in part design through either adding material in critical areas of the part, reducing end-use loads or forgoing ME as a manufacturing option. To address this limitation, the authors propose a multi-axis deposition technique that deposits material along a part's surface to improve mechanical performance. Specifically, the authors employ a custom 6 degree of freedom robotic arm ME system to create a surface reinforcing ‘skin’, similar to composite layup, in a single manufacturing process. In this paper, vertical tensile bars are fabricated through stacked XY layers, followed by depositing material directly onto the printed surface to evaluate the effect of the skinning approach on mechanical properties. Experimental results demonstrate that surface-reinforced interlayer bonds provide increased yield strength.  相似文献   

3.
A method of generating optimal tool paths for sculptured surface machining with flat-end cutters is presented in this paper. The inclination and tilt angles, as well as the feed directions of the cutter at each cutter contact point on a machining path are optimised as a whole so that the machining width of the tool path can be as large as possible, and concerns such as smooth cutter motion, gouging avoidance, scallop height and machining widths overlap are also considered when calculating a path. A multi-criteria tool path optimisation model is introduced, and it is converted into a single objective optimisation with the weighted sum method. The Differential Evolution (DE) algorithm is suitable for solving this highly non-linear problem. However, the searching process of the DE algorithm may be trapped in local minima due to large number of design variables. Therefore, an algorithm combining the DE algorithm and the sequence linear programming algorithm is developed to solve this optimisation model. The proposed method is applied to two freeform surfaces to illustrate its effectiveness.  相似文献   

4.
应用表面建模方法,建立了假肢接受腔的三维数学模型。针对假肢接受腔的独特外形特征,研制了加工假肢接受腔阳模的三轴联动数控机床,该机床控制系统采用开环系统,可以运行CAD/CAM软件。对加工假肢接受腔阳模的刀具进行了运动轨迹规划,推导出了切削点的计算公式。根据三维刀具半径补偿原理,确定了刀具的刀位点运动轨迹。经过临床实例加工表明:该数控机床和刀具运动轨迹规划算法完全满足实际应用要求。  相似文献   

5.
In 5-axis high-speed milling, large incoherent movements of rotary axes around the singular point are known to be a problem. Correction methods found in the literature deal mostly with the collision that may happen between the tool and the part but not with the feedrate slowdowns which affect surface quality and machining productivity. The method proposed in this paper addresses both geometrical and productivity issues by modifying the tool axes orientation while respecting maximum velocity, acceleration and jerk of the machine tool axes. The aim is to detect these behaviours and replace the considered portion of the tool path by a patch curve respecting kinematical constraints of the machine tool. Compared to previous works, the inserted patch curve is not constrained to pass through the singularity but respect tangential constraints to ensure the monotony of the tool path and is also connected with the rest of the tool path to ensure a continuity up to the third derivative in order to fulfil jerk limitations. For that purpose, the initial articular positions of the rotary axes around the singular point are fitted with B-spline curves, modified and finally discretised for linear interpolation. Experimental investigations on a test part are carried out to show the efficiency of the method in terms of feedrate and surface quality.  相似文献   

6.
In the finish machining of a pocket corner, varying radial depth of cut is generally encountered by the end milling tool during the entry into and exit from the corner. This leads to substantial variability of the machining process. This paper presents the generation and application of a multiple looping tool path for corner machining with the objective to reduce the machining variability and improve the machining efficiency. Material removal rate is selected as the measure for the machining variability. To reduce the material removal rate for a straightforward corner machining tool path, feed rate needs to be decreased as the end mill approaches the corner apex and increased as it exits the corner. Instantaneous changes of feed rate are not possible in practice due to practical limitations on the servo drive system of common machine tools. A tool path of constant feed rate is thus preferred for effective corner machining. The looping tool path proposed in this work is composed of a series of smoothly connected linear and circular segments to ensure its applicability for all machine tools. For a given corner geometry, a single-cutter as well as a double-cutter strategy have been introduced to maximise the machining efficiency. Various case studies were carried out to examine the resulting material removal rate and total machining time for different machining operations.  相似文献   

7.
Strategies for cutter size optimisation and interference-free tool path generation are proposed for five-axis flank milling of centrifugal impellers. To increase the material removal rate and provide a stronger tool shank during flank milling, the cutter size is first maximised under a set of geometric constraints. The tool path is then globally optimised in accordance with the minimum zone criterion for the determined optimal cutter size. Aside from the local interference of the cutter with the design surface, the global interferences with the hub surface and the adjacent blade surface are also considered in the optimisation models. Interference is indicated by the signed distance from the sampled point on the blade surface to the tool envelope surface. This distance is calculated without constructing the envelope surface. On the basis of the differential property of the distance function, we choose a sequential linear programming method in implementing the optimisations. This approach applies to generic rotary cutters, such as cylindrical and conical tools. Simulations are conducted to obtain the optimal cutter size and generate an interference-free tool path for a practical impeller. Simultaneously, a software module that can generate tool envelope surfaces and verify geometric errors is used to validate the proposed method.  相似文献   

8.
Free-form surfaces are widely used in many applications in today’s industry. This paper presents a new approach to identify and compensate process-related errors in machining of free-form surfaces. The process-related errors are identified online by a newly developed in-process inspection technique. In this technique, the surface is first machined through an intermediate semi-finishing process that is specifically designed to machine different geometric shapes on the surface with different process parameters. An inspection method is developed to identify the process-related errors in the selected regions on the semi-finished surface. The relationship between the machining/surface parameters and process-related error is then achieved using a neural network. This relationship is used to predict the process-related errors in the finishing process. The process-related errors, together with the machine tool geometric errors identified using a method developed in our previous work, are compensated in the finishing tool paths through tool path re-planning. Experiment has been conducted to machine a part with a free-form surface to show the improvements in the machining accuracy.  相似文献   

9.
Traditional machining processes, where material is removed by a cutting tool from a workpiece, can introduce residual stresses at the surface of machined pieces. This paper provides an examination of an alternative machining methodology called modulated tool path machining. The ultimate objective of this research is to determine the effects of modulated tooling path machining processes, as applied to control chip geometry, on the surface stress of selected materials. Residual stresses in machined samples were characterised through the use of X-ray diffraction by comparing the modulated path method with a more traditional material removal technique (i.e. constant surface speed and constant contact).

This paper is part of a Themed Issue on Measurement, modelling and mitigation of residual stress.  相似文献   

10.
Parameterisation-based methods for planning tool paths on mesh surfaces have been developing for years. The issue of existing mapping deformation which results in machining error has not been sufficiently addressed. And it still needs particular 3D geometric operations when planning iso-scallop tool path. To handle these, an effective approach to directly generating the iso-scallop paths on the parametric domain utilising anisotropic mapping stretch factors is proposed. The conformal parameterisation algorithm, Angle Based Flattening, is first implemented for the mapping between the spatial mesh and the planar mesh. Then a general method to convert 3D path parameters into 2D, which involves the direction mapping and length mapping based on the mapping deformation analysis, is presented. After that, a non-uniform offsetting method is proposed for retrieving the valid 2D offset paths. Finally, the iso-scallop paths on the parametric domain can be generated using the converted 2D path parameters and the present non-uniform offsetting method, and then the corresponding tool paths are obtained by inverse mapping. Simulation and experimental results are given to validate the feasibility and effectiveness of the proposed methods.  相似文献   

11.
Conventional algorithms for tool path generation from measured points do not use multi-resolution and region-by-region strategies, the advantages of which have been demonstrated, to generate region-by-region tool paths. This paper presents a new strategy for generating tool paths from measured points directly by using multi-resolution and region-by-region strategies. Given a set of measured points, for rough-cuts we select a fewer number of measured points than control points to construct a coarse B-spline surface and then generate rough-cut tool paths. For finish-cuts, we select a large number of measured points as control points to construct a fine B-spline surface and then generate region-by-region finish-cut tool paths.  相似文献   

12.
The two additional rotational motions of five-axis machining make the determination of the optimal feed direction and tool orientation a challenging task. A new model to find the optimal feed direction and tool orientation maximising the machining width and avoiding local gouging at a cutter contact (CC) point with a flat-end cutter considering the tool path smoothness requirement is developed in this paper. The machining error is characterised by a signed distance function defined from a point on the bottom tool circle of the cutter to the design surface. With the help of the differential evolution approach, the optimisation model can be resolved to determine the optimal tool orientation and feed direction at a given CC point, and generate the smooth tool paths following the optimal feed direction. Simulation examples demonstrate the developed techniques can improve the tool orientation and feed direction at a CC point to increase the machining width, improving the efficiency of freeform surface machining.  相似文献   

13.
Roughing tool path of panel machining, which is a bottleneck of spacecraft production, should be optimised rapidly to shorten process time. This problem has a large solution space, and surface quality should be taken into account. The decision variables are cavity machining order, feed point and cutting direction of each cavity. Our problem is presented as an asymmetric general travelling salesman problem (AGTSP). A cluster optimisation-based hybrid max–tmin ant system (CO-HMMAS) is proposed, which solves two sub-problems as a whole. The oriented pheromone and dynamic heuristic information calculating methods are designed. We analyse the differences between one-stage and two-stage AGTSP local search heuristics and combine CO-HMMAS with them properly. An improved Global 3-opt heuristic suitable for both symmetric and asymmetric cases is proposed with sharply reduced time complexity. Comparison experiments verified that, two-stage local search heuristics decrease solution error significantly and rapidly when the error is great, and one-stage ones improve a near-optimal solution costing much more computing time. Benchmarks tests show that, CO-HMMAS outperforms the state-of-the-art algorithm on several technical indexes. Experiments on typical panels reveal that all algorithm improvements are effective, and CO-HMMAS can obtain a better tool path than the best algorithm within less CPU time.  相似文献   

14.
Reflectometric results are given for a nonparallel incident beam at various wavelengths. A number of different original portable testers have been developed on the basis of those results for checking the roughness parameter Ra of outside surfaces. The devices are described and their specifications are given.Translated from Izmeritelnaya Tekhnika, No. 11, pp. 21–25, November, 2004.  相似文献   

15.
In the manufacturing field, the assembly process heavily affects product final quality and cost. Specific studies, concerning the causes of the assembly defects, showed that operator errors account for high percentage of the total defects. Also, models linking the assembly complexity with the operator-induced defect rate were developed. Basing on these models, the present paper proposes a new paradigm for designing inspection strategies in case of short-run productions, for which traditional approaches may not be carried out. Specifically, defect generation models are developed to get a priori predictions of the probability of occurrence of defects, which are useful for designing effective inspection procedures. The proposed methodology is applied to a case study concerning the assembly of mechanical components in the manufacturing of hardness testing machines.  相似文献   

16.
Barrel tool radius compensation is very important to improve the five-axis CNC machining precision and efficiency of sculptured surfaces. By combining macro variables and math function of CNC controller, a radius compensation method of barrel tool based on macro variables in five-axis flank machining of sculptured surfaces was presented. The basic principle of barrel tool radius compensation in five-axis flank machining was firstly investigated. For a specific five-axis CNC machine tool with dual rotary tables, a relationship equation between compensated cutter location (CL) data and machine control (MC) data could be derived. A post-processor with the function of five-axis barrel tool radius compensation was then developed by using the C++ language, which could generate the NC programme with macro variables of barrel tool radius compensation. Finally, the NC programme was obtained automatically by the developed post-processor for the aero-engine blade surface machining. The machining process was simulated on the software VERICUT, and machining experiments were also conducted on the five-axis machine tool. Both the simulation and experimental results showed that the proposed method could perform the function of barrel tool radius compensation in the NC programme for five-axis flank machining.  相似文献   

17.
简要介绍了用于内表面测量的圆结构光视觉系统,分析了内表面圆结构光视觉图像特征,并给出了干扰光条的产生原因。在此基础上,提出了干扰光条的剔除方法与有用光条图像中心的子像素级提取方法。介绍了基于阶跃边缘轮廓模型的边缘提取方法,该方法采用非线性优化方法进行模型参数估计,具有速度快、鲁棒性强、精度高的特点。  相似文献   

18.
Global optimisation for manufacturing problems is mandatory for obtaining versatile benefits to facilitate modern industry. This paper deals with an original approach of globally optimising tool paths to CNC-machine sculptured surfaces. The approach entails the development of a fully automated manufacturing software interface integrated by a non-conventional genetic/evolutionary algorithm to enable intelligent machining. These attributes have been built using already existing practical machining modelling tools such as CAM systems so as to deliver a truly viable computer-aided manufacturing solution. Since global optimisation is heavily based on the formulation of the problem, emphasis has been given to the definition of optimisation criteria as crucial elements for representing performance. The criteria involve the machining error as a combined effect of chord error and scallop height, the tool path smoothness and productivity. Experiments have been designed considering several benchmark sculptured surfaces as well as tool path parameters to validate the aforementioned criteria. The new approach was implemented to another sculptured surface which has been extensively tested by previous research works. Results were compared to those available in the literature and it was found that the proposed approach can indeed constitute a promising and trustworthy technique for the global optimisation of sculptured surface CNC tool paths.  相似文献   

19.
We consider the issues of tool path optimisation under constraints and formulate a mathematical problem of visiting megalopolises. The megalopolises model is the result of the discretisation of the tool path problem for CNC plate cutting machines. The order of visits is subject to precedence constraints. In addition, the cost functions depend on the set of pending tasks. The quality criterion is a variety of the additive criterion. The problem is established within the dynamic programming framework, however, a heuristic is proposed and implemented to solve practical problems of large dimensionality.  相似文献   

20.
Wenhui Zeng  Xiao Rao  Yun Zheng 《工程优选》2017,49(11):1995-2012
In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task’s completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task’s completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号