首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
《Planning》2019,(23)
针对房柱式采空区下方近距离煤层开采时上覆煤柱易失稳,容易发生顶板大面积突然垮落进而造成强动压灾害的问题,以中煤华昱公司元宝湾煤矿为工程背景,分析了6号煤工作面回采过程中上覆4号煤房柱式采空区顶板突然大面积垮落的可能性,研究了复合采空区条件下煤层开采顶板致灾机理,引入了分段定向水压致裂强制放顶技术手段。通过在元宝湾矿6煤6203回采工作面切眼及顺槽运用定向水压致裂技术对工作面顶板及上覆采空区顶板进行弱化治理,缩短了工作面初次来压和周期来压步距,减小了工作面来压强度,成功地防治了上覆房柱式采空区大面积悬顶导致的垮落致灾隐患,保证了工作面的安全回采。取得了良好的经济和社会效益,并为类似矿井的安全回采提供了实践参考。  相似文献   

2.
浅埋近距离房式煤柱下长壁工作面回采将受到上煤层采空区遗留煤柱和本煤层工作面动压的共同影响。针对石圪台矿3–1–2煤层工作面顶板压力大、支架被压死等问题,采用理论分析、数值模拟及现场试验等方法,探讨采动应力演化规律及压架致灾机制。研究结果表明,与莫尔–库仑准则相比,应变软化准则能够准确地反映上层遗留房式煤柱在下层长壁工作面采动应力影响下的变形破坏机制;当上层遗留煤柱较完整,下煤层工作面位于煤柱下方时,受煤柱应力集中及采动影响,下煤层工作面顶板沿煤柱边缘直接切落,载荷集中造成支架压死。通过采前或回采过程中爆破上层遗留煤柱,将顶板压力转移到工作面前方煤岩体内,有效减小工作面围岩应力集中,保证下煤层工作面安全开采。  相似文献   

3.
 针对淮南矿区提高回采上限工作面易于发生压架事故,采用理论分析和现场实测对上提工作面特殊的覆岩结构及其压架机制进行了研究。建立了不同覆岩结构围岩–支架力学模型,推导出了上覆基岩及松散层作用在关键层上的载荷,确定了支架临界工作阻力,并提出了相应的工作面压架防治措施。研究结果表明:以直接顶充填系数、覆岩关键层结构、基岩面表土层水文地质结构为判据,可将上提工作面覆岩结构分成4大类6种。单一关键层结构上提面压架危险性要比多层关键层结构高。对于单一关键层结构,当工作面临近松散承压含水层时,关键层距离含水层越近,水压越大,则作用在关键层上的载荷越大,关键层“砌体梁”结构越容易发生滑落失稳;当基岩面为厚黏土层时,采动影响下黏土层内部形成自然平衡拱结构,在“拱”结构保护下,“砌体梁”不易发生滑落失稳。  相似文献   

4.
为了确定大同矿区侏罗系煤层群开采形成的孤岛覆岩结构对石炭二叠系工作面开采矿压显现的影响,以同忻矿8104、8106工作面为研究对象,通过理论分析确定侏罗系煤层群开采孤岛覆岩结构的形成条件,构建FLAC3D数值模型,分析孤岛覆岩结构对石炭系煤层应力控制及矿压显现特征,并结合微震监测数据进行了合理验证。研究表明:当侏罗系煤层遗留煤柱宽度≥22.3 m时可形成孤岛覆岩结构,煤柱宽度为80 m时,孤岛覆岩结构对石炭系煤层工作面影响达到峰值;数值模拟说明8106工作面及5105巷道受到孤岛覆岩结构影响,其矿压显现强度及范围明显增大,围岩应力最大增至40 MPa;微震监测显示8104工作面推进孤岛覆岩结构过程中,个别微震事件能量级别达到了106 J,具备了诱发冲击地压发生能量条件。  相似文献   

5.
为分析深部厚硬顶板破断对厚煤层安全开采的影响,根据胡家河矿402102工作面工程地质和开采条件,构建了大型真三维相似物理模拟试验(3500 mm×3000 mm×2000 mm),开展了留煤柱双工作面开采的试验研究。利用光栅位移连续监测装置对采动覆岩位移进行实时监测,获得了厚硬顶板条件下厚煤层开采覆岩破断运移规律和"三带"动态演化特征。研究结果表明:厚硬关键层变形破断时,软弱岩层会发生协同运动,位移监测点位移量发生突增,监测点位移曲线随工作面推进呈"台阶式"变化。在一侧临空条件下,402102工作面亚关键层1(粉砂岩)初次破断步距为43 m,周期破断步距为21 m;亚关键层2(含砾粗砂岩)初次破断步距为74 m,周期破断步距为51 m;亚关键层3(中砂岩)初次破断步距为171 m。当亚关键层2发生周期性破断和亚关键层3发生初次破断时,采空区位移监测点位移量均发生增幅,覆岩发生大范围整体性运动,矿压显现较为剧烈;受402103采空区采动覆岩结构的影响,在402102工作面回采时,其回风巷侧覆岩运移较为剧烈,巷道受动压影响较大。根据位移监测点的位移量和覆岩变形碎胀因子max(Ki)的大小,对采动覆岩"三带"发育形态进行了初步判别,亚关键层1(粉砂岩)和亚关键层2(含砾粗砂岩)均处于冒落带中,且随着工作面推进,冒落带和裂隙带高度呈"台阶式"增大。  相似文献   

6.
针对高头窑煤矿G3-1102工作面回采期间矿压显现剧烈的现象,揭示了浅埋房式采空区下煤层长壁工作面矿压显现特征规律,研究了浅埋煤层回采工作面液压支架压架灾害发生的机理,对高头窑煤矿安全高效生产有一定意义。  相似文献   

7.
针对近距离强冲击倾向性煤层上行复采覆岩结构演化特征与稳定性问题,以宽沟煤矿B4-1强冲击倾向性煤层复采为背景,建立强冲击倾向性煤层上部倒梯形覆岩结构与冲击发生临界位置的关键层结构力学模型,提出煤柱最小安全距离的分析方法。采用物理材料相似模拟与数值模拟相结合的方法,运用压力传感器与SOS微震监测系统,对覆岩结构演化、矿压显现以及震源分布特征展开分析,利用覆岩结构的稳定性分析对冲击危险性进行评估。结果表明:B4-1强冲击倾向性煤层上行复采过程中,上部覆岩呈现以关键层为分界的"双倒梯形体"结构与关键层上部岩层集中垮断后的"单倒梯形体"结构动态式演变过程;余煤尺寸较小时上部倒梯形覆岩结构震源集中、能量大,采空区活化区域震源分散、能量小。提出了余煤复采中倒梯形覆岩结构稳定性分析的冲击地压危险性指数I_m、冲击临界位置关键层受力分析的冲击地压危险性指数I_n,定量化分析冲击危险性指数变化趋势,将B4-1煤层复采划分为覆岩相对稳定区、周期性明显破坏区、冲击危险区域3部分。数值模拟分析底板应力验证了双峰值应力叠加效应的准确性。采用三种方法综合分析得到了为确保近距离强冲击倾向性B4-1煤层上行开采的煤柱剩余尺寸为39.2m。研究结果为近距离强冲击倾向性煤层上行开采覆岩结构稳定性研究提供了科学指导。  相似文献   

8.
 针对神东矿区石圪台煤矿1-2煤一盘区多个工作面在推出上覆1-2上煤一侧采空煤柱过程中发生的压架事故,采用现场实测、理论分析和模拟试验,对压架发生的机制及其防治对策进行研究。结果表明:下煤层切眼布置于上覆煤柱区下方,造成工作面回采期间经历由煤柱区进入采空区下的开采过程,即为出一侧采空煤柱的开采。在此过程中出现的压架存在2种类型,当切眼距煤柱边界较远而大于煤柱上方关键层的初次破断距时,则出煤柱时该关键层将处于周期破断状态,并与煤柱边界采空区一侧已断块体形成非稳定的三铰式结构,该结构的相对回转运动传递的过大载荷是压架发生的根本原因。当切眼距煤柱边界较近而介于煤柱上方关键层的初次破断距和周期破断距之间时,则出煤柱时该关键层将呈现悬臂式破断,由于其破断跨度较大,将造成支架载荷的过大而压架;同时,若此破断跨度超过该关键层1.7~1.9倍的周期破断距时,其压架强度将明显增高。模拟试验和工程实践表明,缩小下煤层切眼距煤柱边界的距离使得煤柱上方关键层不发生破断,可有效防治出一侧采空煤柱开采的压架。  相似文献   

9.
随着煤炭开采深度的增加,强矿震频发,严重威胁着井下矿工和地面居民的安全,影响矿山生产力和开采效益。基于岩层运动关键层理论和矿震监测技术,研究东滩煤矿深部煤层开采过程中强矿震分布及演化规律,以及煤层开采导致上覆多关键层协同运移破断特征和诱发矿震的能量传播规律。结果表明,深部煤矿开采初期矿震大多集中在低位岩层,随着工作面的推进,矿震逐渐向高位岩层转移,高位厚硬岩层是强矿震的主要孕育、发生基地。深部煤层上覆往往孕育多层关键层,煤层采动易造成上覆多关键层协同断裂运动。随着破断岩层总厚度逐渐变大,岩层中积聚的弹性应变能被瞬间释放而诱发矿震。工作面回采后,关键层断裂一般会以“O-X”形式呈现,形成“O-X”型破断的范围由下向上逐渐增大,形成的破断结构亦有主亚之分。研究结果对类似条件下深部煤矿工作面的安全、高效开采具有借鉴意义。  相似文献   

10.
近距离煤层群回采巷道失稳机制及其防治   总被引:6,自引:2,他引:4  
 近距离煤层群开采过程中下层煤回采巷道将受到上煤层采空区遗留煤柱、本煤层邻近工作面动压的影响,针对崔家寨矿E12505工作面机巷出现的冒顶、底臌等严重现象,采用现场实测、理论分析及数值模拟等研究方法,探讨巷道失稳机制。研究结果表明,当上煤层采空区遗留煤柱宽度较小,下层煤巷道位于正下方、本煤层邻近工作面护巷煤柱较小时,受采动影响后巷道容易失稳;提出应距上煤层采空区遗留煤柱25 m、护巷煤柱尺寸20 m,加强巷道支护后可保证下层煤巷道稳定。据此,在E12611和E12504工作面进行工业性试验,取得较好效果。  相似文献   

11.
The 121 mining method of longwall mining first proposed in England has been widely used around the world.This method requires excavation of two mining roadways and reservation of one coal pillar to mine one working face.Due to considerable excavation of roadway,the mining roadway is generally destroyed during coal mining.The stress concentration in the coal pillar can cause large deformation of surrounding rocks,rockbursts and other disasters,and subsequently a large volume of coal pillar resources will be wasted.To improve the coal recovery rate and reduce excavation of the mining roadway,the 111 mining method of longwall mining was proposed in the former Soviet Union based on the 121 mining method.The 111 mining method requires excavation of one mining roadway and setting one filling body to replace the coal pillar while maintaining another mining roadway to mine one working face.However,because the stress transfer structure of roadway and working face roof has not changed,the problem of stress concentration in the surrounding rocks of roadway has not been well solved.To solve the above problems,the conventional concept utilizing high-strength support to resist the mining pressure for the 121 and 111 mining methods should be updated.The idea is to utilize mining pressure and expansion characteristics of the collapsed rock mass in the goaf to automatically form roadways,avoiding roadway excavation and waste of coal pillar.Based on the basic principles of mining rock mechanics,the“equilibrium mining”theory and the“short cantilever beam”mechanical model are proposed.Key technologies,such as roof directional presplitting technology,negative Poisson’s ratio(NPR)high-prestress constant-resistance support technology,and gangue blocking support technology,are developed following the“equilibrium mining”theory.Accordingly,the 110 and N00 mining methods of an automatically formed roadway(AFR)by roof cutting and pressure releasing without pillars are proposed.The mining methods have been applied to a large number of coal mines with different overburdens,coal seam thicknesses,roof types and gases in China,realizing the integrated mode of coal mining and roadway retaining.On this basis,in view of the complex geological conditions and intelligent mining demand of coal mines,an intelligent and unmanned development direction of the“equilibrium mining”method is prospected.  相似文献   

12.
以某矿厚硬顶板条件下特厚煤层上分层开采发生的巷道与工作面同时冲击的事故为背景,研究事故发生的机理与治理方法。研究表明:引起事故的主要力源来自上层煤煤柱、不等宽区段煤柱、巨厚坚硬顶板和大断层等形成的集中应力;主要冲击灾害体是巷道和工作面内的底煤;底煤发生冲击的主要力学机理是底煤在水平应力突变条件下发生屈曲破坏,并在垂直应力作用下发生冲击性滑移。提出了上层煤柱对下层煤采动影响范围与冲击危险范围的评估方法,为制定恢复生产方案提供了科学依据。根据发生事故的机理,制定并实施了恢复生产的方案,通过实施危险区卸压措施和建立冲击危险实时监测预警体系,工作面恢复了生产,保障了安全开采。  相似文献   

13.
在急倾斜三软厚煤层走向长壁俯伪斜采煤条件下实施留小煤柱沿空护巷十分困难,煤柱稳定性和巷道围岩变形极难控制。针对这一难题,提出了包含煤柱小角度锚固法和十字护顶方法的留小煤柱沿空护巷技术,有效解决了煤柱易沿顶底板剪切破坏并向巷内搓动的问题,降低了巷道软弱围岩的破碎程度和变形量。现场试验结果显示,留设小煤柱的完整性保持较好,其中相较于原支护方式顶底板移近量减少了40%,两帮收敛量则减少了42%,巷道围岩变形得到了有效控制。与此同时,还得到工作面前后方回采巷道的矿压显现呈现明显的6个分区,分别为工作面前方无影响区、工作面前方矿压显现影响区、工作面前方矿压显现强烈区、工作面后方顶板激烈活动区、工作面后方顶板活动减缓区和工作面后方基本稳定区。其中,工作面前方矿压显现强烈区和工作面后方顶板活动激烈区的范围明显大于缓斜近水平煤层,这为分区制定围岩控制措施提供了有利依据。所得研究成果可为我国急倾斜走向长壁俯伪斜工作面沿空护巷技术研究提供一定的补充。  相似文献   

14.
近距离跨采对巷道围岩稳定性影响分析   总被引:19,自引:2,他引:19  
针对近距离跨采时,工作面与底板岩巷的不同空间位置关系,采用数值力学分析,详细地分析了工作面开采引起的围岩应力演化过程及特点、近距离跨采引起底板岩巷围岩位移的特点以及巷道位置对其围岩稳定性的影响。研究结果表明,煤柱上支承压力分布是开采影响岩层相互作用的结果,是开采引起集中应力在煤层与直接顶界面上的直接反映。近距离跨采巷道围岩位移受开采引起的整体位移场影响较大,而不单纯决定于煤柱侧支承压力的作用。留设保护煤柱时,底板岩巷应位于集中应力区的外侧或跨采时工作面应推过足够距离,使巷道靠近采空区应力恢复区的下方。最后通过实例给予了分析。  相似文献   

15.
为了研究分析上下煤层两侧都采空而形成的孤岛面沿空掘巷和煤层开采时围岩应力分布及变形破坏特征,应用理论分析、计算机数值模拟与具体工程实践相结合的研究方法,分析了上下煤层两侧采空情况下,下孤岛工作面迎上孤岛面沿空掘巷期间及煤层开采过程中,采场围岩应力分布、变形破坏规律。结果表明:该情况下孤岛工作面围岩结构特征因受多次开采影响,其整体性和联动性都有所降低,采场围岩应力分布特征有所不同,且煤柱宽度尺寸对巷道受力变形有较大影响。掘巷期间轨道巷煤柱帮的变形量大于实体煤帮变形量,顶板下沉量大于底鼓量;回采期间顶板运移特点决定了两巷围岩主要呈现拉剪破坏,随着工作面的推进,采动影响阶段和影响剧烈阶段范围逐渐增大,巷道断面收缩率随着距工作面距离的减小而增大。对于孤岛面开采沿空巷道的特殊围岩条件,应遵循“强顶、固帮、控底的全断面围岩控制技术思路,对上下隅角附近巷道加强支护,提高围岩自身强度,为类似条件孤岛面巷道维护及安全开采提供理论技术保障。  相似文献   

16.
为了在提高煤炭资源采出率的同时保证巷道的稳定性,提出在陈四楼煤矿2216工作面二2煤层采用留小煤柱沿空送巷技术。本文通过平面应变模型试验和FLAC3D数值模拟计算,分析了在锚杆支护下不同宽度煤柱的破坏状态、应力分布及巷道围岩变形等因素,进而确定沿空送巷的合理煤柱宽度。研究表明,留设煤柱是沿空送巷围岩的一个重要承载结构,选择5 m煤柱作为窄煤柱护巷能够保证巷道的使用安全并具有相对较高的采出率,而帮锚采用全锚支护能够使锚杆的支护效应得到更为充分的发挥。  相似文献   

17.
在大倾角煤层走向长壁工作面综放开采沿倾斜方向能形成老顶稳定结构的理论基础上,建立了一种能够描述较破碎老顶结构的力学模型,通过引入相似材料模拟实验得到的煤岩体参数,求解得到了本研究中的老顶稳定结构的力与位移关系式,可用于分析评价老顶结构的阻水性能。现场工作面以及采空侧的出水监测数据揭示了老顶稳定结构具有阻水性,验证了本文建立的老顶结构力学模型的合理性。计算结果显示老顶稳定结构的阻水效果受到煤层倾角的影响,推导了35°~55°倾角较破碎煤层老顶结构起到阻水作用所需的最小采深关系式,可为现场地表水害分区段治理提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号