首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
为了研究卸荷速率和孔隙水压力对砂岩卸荷力学特性的影响,设计进行了不同卸荷速率(0.005,0.02,0.05,0.1 MPa/s)和不同孔隙水压力(0,0.3,0.6,0.9,1.2 MPa)下的三轴卸荷试验。研究结果表明:(1)在加载阶段,随着孔隙水压力的增大,岩样的应力–应变曲线斜率逐渐降低;(2)在围压卸载阶段,卸荷速率越大,卸载阶段的应变围压柔量越小,岩样破坏时的围压越小,岩样强度相对较高,但破碎程度更严重,而且,在相同的卸荷速率情况下,孔隙水压力越大,岩样侧向扩容现象越明显,岩样越容易破坏;(3)在围压卸载阶段,岩样的变形模量出现了先缓后陡的劣化趋势,而且,卸荷速率越小、孔隙水压力越大,变形模量劣化幅度越大;(4)卸载过程中,卸荷速率越大,岩样脆性破坏特征越明显;孔隙水压力越大,岩样破坏时的近轴向的张性裂纹越多和追踪次生裂纹越多,孔隙水压力在岩样内部裂纹、裂隙尖端的应力集中是导致岩石变形破坏的主要原因。  相似文献   

2.
隆升剥蚀过程可能导致鄂西渝东地区油气盖层破裂,油气散失。选取区域盖层碳质泥页岩,开展10,20,30,40,50 MPa五种不同初始围压下的三轴卸荷力学试验,研究隆升剥蚀对不同埋深岩石的影响。结果表明:岩石卸荷破坏时的轴向、径向变形随卸荷初始围压增大而增大;卸围压过程中卸载初始围压较小时,径向应变大于轴向应变,随初始围压增大,径向应变略小于轴向应变;卸荷试验获得到的泥页岩抗压强度与抗剪切参数均比常规三轴压缩试验高;岩石的破裂形式由低卸荷围压下的张性破裂向高卸荷围压下的剪切破坏过渡,在40 MPa时产生纵横切割试样的网状裂纹;提出侧压破裂系数初步评价区域盖层,结合鄂西渝东的抬升剥蚀量数据,推断石柱复向斜北部和方斗山复背斜以西是油气勘探容易取得突破地区,为区域油气勘探提供岩石力学依据。  相似文献   

3.
为了揭示深部软弱地层开挖卸荷后围岩流变力学特性,开展砂质泥岩恒轴压逐级卸围压三轴卸荷蠕变试验,研究软岩轴向、侧向和体积蠕变规律和卸荷流变过程中偏应力–应变关系特性。主要结论有:(1)每卸除一级应力(10 MPa)产生的瞬时变形、蠕变变形、蠕变变形相对该级荷载下的瞬时变形的比值、蠕变变形占总变形量百分比均随偏应力的增加而增大,围压越低蠕变变形增加的幅度越大;(2)随着围压逐级卸荷,岩石内部产生竖向张性微裂纹,微裂纹的萌生和扩展使得卸围压瞬时产生较明显的侧向变形,且蠕变过程中微裂纹将发生与应力水平相应的时效扩展,产生黏塑性变形;(3)岩石在时效条件下的渐进破坏的本质是损伤随时间的逐渐累积,并伴随着裂纹的时效扩展,统称为时效损伤破裂;(4)随着围压逐级卸荷,偏应力增大,历史上经历的卸荷级数多、蠕变时间长,试样内部积累的不可恢复应变和损伤越多,时效损伤破裂越剧烈,在该级荷载条件下轴压低的试样其流变速率越大,蠕变变形量越大,卸荷效应和流变特征更加明显,同时伴随显著的侧向扩容,导致蠕变扩容;(5)卸荷和蠕变所产生的损伤和塑性变形对后续力学行为影响非常显著。  相似文献   

4.
 岩石所处的初始应力状态及开挖等工况诱发的卸荷速率大小对其力学特性具有明显的影响,通过室内三轴卸荷试验和破裂断口的SEM细观扫描分析,研究高应力环境中不同卸荷速率下锦屏一级水电站大理岩的变形破裂及强度特征。卸荷速率vu和初始围压 越大,岩石脆性及张性断裂特征愈明显,快速双向卸荷时甚至可在次卸荷方向产生张拉裂缝。张性破裂断口细观形态随vu和 的增大依次呈现“树枝形张裂状”、“千层饼形撕裂状”和“近光滑平面形弹射状”;卸荷过程中轴向压缩应变增量 随vu和 增大而减小,而侧向膨胀应变增量 却增大;不同的卸荷变形阶段卸荷速率vu对变形模量E的影响规律不同,峰前E随vu的增大而增大,而峰值E随vu增大先逐渐增大再迅速降低;卸荷过程中岩石的泊松比 逐渐增大,并随vu和 增大而显著,特别是从峰值点后;相对于加载试验,卸荷条件下岩体的黏聚力c大大减小,而内摩擦角j却有少量增大,vu越快,c减小得越多,j增大的较少。  相似文献   

5.
对丹巴电站调压井围岩的片岩试样进行了加载试验和卸荷试验研究,分别分析了常规三轴试验及加轴压卸围压、以相同速率同时卸轴压与围压的3种加、卸载方式下的应力-应变关系及整个加、卸载过程中变形参数的变化规律,分析表明:片岩在卸荷条件下表现出明显的脆性破坏特征,而且有强烈的扩容现象,卸荷条件下岩石的破坏也是由于扩容所引起的;卸荷会造成岩体变形模量迅速减小、泊松比迅速增大;试验采取的两种卸荷方式与常规三轴相比较,岩石试样从受力至破坏的整个过程中其变形模量和泊松比的变化趋势有明显的不同,尤其是在相同速率同时卸轴压与围压的卸荷方式对岩石的变形参数影响很大。  相似文献   

6.
为了研究低孔隙水压力对砂岩卸荷力学特性的影响,在TOP INDUSTRIE多功能岩石三轴测试系统上,设计进行不同围压(5,10,15,20 MPa)和不同孔隙水压力(0,0.3,0.6,0.9,1.2 MPa)下的砂岩三轴卸荷试验。重点分析孔隙水压力对砂岩卸荷强度及变形破坏特征的影响。研究结果表明:(1)随着孔隙水压力的增大,岩样加载阶段的弹性模量逐渐减小,而且围压越小,相同的孔隙水压力增量条件下,弹性模量减小趋势越明显;(2)在卸载过程中,岩样侧向变形的增大速率明显大于轴向变形,而且,孔隙水压力越大,围压越小,侧向扩容现象越明显,岩样越容易破坏;(3)在卸载过程中,岩样的变形模量呈现先缓后陡的劣化规律,而且围压越小、孔隙水压力越大,变形模量降低幅度越大;(4)随着孔隙水压力的增大,岩样破坏时对应的围压值逐渐增大,黏聚力和内摩擦角降低趋势明显,说明孔隙水压力加速了岩石破坏的进程;(5)水对砂岩矿物颗粒的软化和颗粒间连接的弱化作用,以及孔隙水压力的水楔效应,是导致砂岩卸荷力学特性劣化的根本原因。因此,在涉水工程岩体卸荷变形稳定分析中,孔隙水压力的作用效应不容忽视。  相似文献   

7.
 高应力条件下,岩石卸荷的力学响应特征及发生机制是高地应力地区岩体工程开挖稳定性评价及控制的关键问题。基于不同卸荷速率和初始围压条件下三轴高应力大理岩卸围压试验,结合分形理论和能量原理,研究高应力卸荷条件下岩石破裂块度分布规律及其与能量耗散和释放的相关性。高应力条件下三轴卸围压大理岩试样碎块分形性质具有较强的局部性,仅在小于某一特征尺度(分形特征尺寸阈值)范围内表现出较好的分形性质,其碎块分维数均大于2,分维数随卸荷速率增大而单调减小,但初始围压对分维数的影响与卸荷速率密切相关。相对常规三轴压缩岩样,高围压下卸荷岩样虽然峰值点附近耗散和储存应变相对少得多,但其峰值前、后应变能转化速率相对大得多,特别是峰后的弹性应变能释放速率和环向膨胀消耗应变能速率。高应力卸荷条件下卸荷速率越快、初始围压越高,峰前损伤和峰后破裂贯通历时越短,峰值点处耗散应变能和储存弹性应变能越大,峰前、峰后应变能转化速率越快,破碎岩样的分形特征尺寸阈值越大,分维数越小,张性破裂程度和性质越强。  相似文献   

8.
为分析端部摩擦对岩石力学参数的影响,采用RMT–150B岩石力学试验系统对砂岩试样进行不同端部摩擦因子和围压卸载速率下的三轴卸围压试验。结果表明:在相同端部摩擦因子和初始围压下,围压卸载速率越大,试样破坏围压越低,试样破坏差应力越大;在相同围压卸载速率和初始围压下,端部摩擦因子越大,试样破坏围压越低,试样破坏差应力也越大;在相同围压卸载速率下,试样内摩擦角φ和黏聚力c值整体上随端部摩擦因子增加近似直线增加;在相同端部摩擦因子下,试样内摩擦角φ和黏聚力c值整体上随围压卸载速率增大而增大,但增加速率逐渐降低。提出包含端部摩擦因子和围压卸载速率的end-friction(E-F)卸载强度准则,通过采用该准则对试样峰值强度和破坏围压的关系进行拟合分析,认为该准则能够较好地描述三轴卸围压破坏试样强度。若已知端部摩擦因子K值,可得到不同围压卸载速率v下岩石E-F卸载破坏强度包络线,进而获得不同围压卸载速率下岩石材料强度参数。  相似文献   

9.
为研究裂隙岩体在水–力共同作用下的强度变形特征和裂纹扩展规律,使用高强石膏采用预埋薄片法制作含不同角度裂隙的类岩石试样,在围压6 MPa下,分别施加1,3,5 MPa水压,对完整及含不同角度裂隙的试样进行三轴试验,分析力学特性和破坏形态,揭示裂隙岩体在水–力共同作用下的破坏规律。试验表明,含裂隙试样随着水压的增大由延性破坏向脆性破坏转变,三轴压缩强度、峰后残余强度和弹性模量均随水压增大而减小,随裂纹倾角增大而先减小后增大,且水压对含裂隙试样力学特性的削弱程度受预制裂纹倾角的影响。完整试样破坏断裂角随水压增大而增大,并由剪切破坏向劈裂破坏转化。含裂隙试样的破坏形态主要为剪切破坏,当预制裂纹倾角较小时,含裂隙试样破坏形态受水压影响显著,高水压下试样呈"X"型破坏;当预制裂纹倾角较大时破裂面呈单一倾斜面,且角度基本与预制裂纹倾角一致。  相似文献   

10.
 为了揭示深部软弱地层TBM开挖卸荷围岩变形破坏特性,分析深埋隧道TBM机械开挖卸荷的本质特征为高初始围压下的缓慢准静态卸荷,开展不同卸荷速率下砂质泥岩三轴卸围压试验,研究卸荷速率效应,获取TBM缓慢准静态卸荷围岩变形破坏特性:(1) 缓慢卸荷条件下的峰前应力–应变曲线与常规三轴压缩时较接近,卸荷屈服阶段,岩石产生损伤扩容,侧向变形加速增长,从体积压缩开始转向扩容;(2) 达到峰值强度后,岩石首先沿已贯通的破裂面滑移,发生1~2级规模较小的脆性跌落,随着围压继续缓慢卸除,岩石沿一条斜率较小的近似斜直线发生线性应变软化,且线性应变软化过程中伴随多级微破裂;(3) 岩石变形全过程经历弹性变形、峰前卸荷损伤扩容、峰后脆性跌落、含有多级微破裂的线性应变软化以及残余强度阶段;(4) 缓慢卸荷破坏过程中,岩石发生宏观张剪复合破坏,伴有轴向劈裂裂纹,破裂断面为由许多劈裂裂纹相互贯通形成具有一定宽度的剪切带,剪切带内劈裂的岩片在轴向挤压力和沿剪切面的剪切力共同作用下被挤压和摩擦成许多细颗粒和岩粉。  相似文献   

11.
卸荷条件下花岗岩力学特性试验研究   总被引:34,自引:15,他引:19  
 基于岩石试件的卸荷试验,研究卸荷条件下岩石的变形、参数及破裂特征。研究结果表明:(1) 卸荷过程中岩石向卸荷方向回弹变形较为强烈、扩容显著,脆性破坏特征明显。(2) 卸荷过程中岩石的变形模量E逐渐减小,泊松比m逐渐增大,E减小了5%~27%,而m增大了50%~335%,变化均随初始围压的增大和卸荷强度的增强而增大,两者均与体积应变相关。(3) 相对于加载试验,卸荷岩石的c减小而j增大,且卸荷强度愈强,c减小得越多,j增大的程度越小。峰值c减小了33.2%~47.8%,而残余c为正常值的65.3%~77.6%,峰值j增加了14.7%~33.2%,而残余j增大了5.9%~9.4%。(4) 卸荷条件下岩石破坏具有较强的张性破裂特征,各种级别的张裂隙发育,双向卸荷时甚至在次卸荷方向上也可能出现张拉裂隙,剪性破裂面一般追随张拉裂隙发展。  相似文献   

12.
锦屏二级水电站大理岩不同应力路径下加卸载试验研究   总被引:4,自引:2,他引:2  
 针对锦屏二级水电站引水隧洞赋存于高地应力环境的特点,对隧洞内的大理岩开展常规三轴压缩试验及峰前、峰后卸围压试验,通过试验数据对比分析,研究大理岩的强度变形特征及破裂机制。主要研究成果:(1) 大理岩峰值强度与实时围压关系密切,应力路径不同、实时围压相同时,峰值强度相同。(2) 围压效应明显,峰值强度随初始围压增加而增加;相比三轴加载试验,峰前卸围压试验峰值强度降低约19.5%,峰后卸围压试验规律不明显,而峰后卸围压试验达到峰值强度时的围压值约占初始围压值的 97.2%,峰前卸围压试验结果较离散。(3) 相比三轴加载试验,峰前卸围压试验c值降低约27.5%, 值提高约22.6%,而与此相反,峰后卸围压试验c值增加约13.7%, 值降低约6.5%,表明大理岩抗破裂的主控因素峰前卸围压试验由摩擦力控制,峰后卸围压试验由黏聚力控制。(4) 峰后卸围压试验自卸荷点开始出现明显的应变平台,表现为理想塑性变形。(5) 峰前卸围压试验的体积应变自卸荷点开始出现明显的转折点。(6) 三轴压缩试验和峰后卸围压试验,大理岩的破坏模式主要为单一剪切破坏,随着围压增加,剪切破裂面端口的粗糙程度降低;峰前卸围压试验的破坏模式为:低围压时的劈裂破坏~中等围压时的“X”型共轭剪切破坏~高围压时的单一剪切破坏。这些研究结论揭示了锦屏大理岩加、卸载应力路径下的力学特性差异,可为西部深埋引水隧洞的开挖、支护设计及稳定性分析提供理论参考。  相似文献   

13.
运用离散元软件PFC2D模拟裂隙岩体,建立一个包含不同倾角、不同组数,宽度5cm、厚度1mm裂隙的10cm×10cm模型,分析单轴加载情况下岩体的变形、破裂规律。结果显示,在单轴加载情况下,随着倾角的增加,岩体的单轴抗压强度出现先减后增的趋势,且裂纹不断增多;随着裂隙的增多,单轴抗压强度逐渐减小。岩体的破裂区集中在裂隙的尖端点部位,以翼裂纹、次生共面裂纹和次生倾斜斜纹为主。通过分析破裂后岩体的颗粒速度分布,从微观层面发现岩体破坏的主要形式及破裂原因。  相似文献   

14.
锦屏大理岩加、卸载应力路径下力学性质试验研究   总被引:4,自引:7,他引:4  
 地下岩体开挖卸荷应力路径不同于加载应力路径,由此引起的岩体强度、变形特征和破坏机制也不尽相同。针对锦屏二级水电站引水隧洞群围岩赋存于高地应力环境的特点,对其中3# 引水隧洞大理岩开展单轴加、卸载以及三轴压缩和高应力条件下的峰前、峰后卸围压等4种不同应力路径力学试验,得到了的应力–应变全过程曲线、变形破坏特征和主要力学参数的变化规律。试验研究结果表明:(1) 建立在岩样单轴逐级等量加、卸载应力路径下的回滞环面积递减,尤以屈服阶段的卸载对应变影响最大;(2) 不同围压下岩样三轴压缩全过程试验结果表明,当围压达到40 MPa时,应变软化特性转化为理想塑性,可以认为该值为锦屏大理岩脆-延转化点;(3) 对比以上不同应力路径下的强度准则方程以及峰前、峰后黏聚力和内摩擦角,相同初始应力条件下,岩石卸载破坏所需应力变化量比三轴压缩破坏情况下对应的应力变化量小,说明岩石卸载更容易导致破坏;(4) 在变形破坏机制方面,由于峰后比峰前卸围压塑性变形大,岩样塑性变形已吸收较多的弹性变形能,其脆性特性受到抑制,因而不像峰前卸围压破坏具有突发性,岩样由张性破坏过渡到张剪性破坏;(5) 根据大理岩岩样加、卸载破坏断口SEM扫描结果,从细观角度验证了脆性岩石在不同路径下微观剪断裂破坏机制。总之,以上研究结果揭示了锦屏大理岩加、卸载应力路径下力学特性差异,对解决工程实际问题具有重要的参考价值。  相似文献   

15.
卸荷岩体的变形破裂特征   总被引:24,自引:10,他引:24  
在岩石试件卸荷试验的基础上,结合大型开挖工程,研究了岩体在卸荷状态下的变形破裂特征。研究表明,岩石在卸荷状态下的变形表现为沿卸荷方向的强烈扩容,其破裂以张性破裂为特征,并存有张剪性和剪性破裂;卸荷岩体除具有上述变形破裂特征外,其变形破裂程度及方式受岩体结构的控制,比岩石更易发生变形与破坏,特别是其破裂体系,很大程度上受岩体结构的控制。  相似文献   

16.
利用岩石伺服试验系统,对经历25℃~900℃作用后的花岗岩试样进行三轴卸围压试验,研究高温后花岗岩在卸荷路径下的变形特性、参数特征及破坏形态。结果表明:经历300℃后的岩样围压卸荷量最少,最容易发生破坏。基于应变围压增量比,定量揭示了卸荷破坏是由强烈的径向变形和体积扩容所致。随着温度上升,各应变围压增量比均先增大后减小,在300℃时达到最大。卸荷过程中岩样的变形模量逐渐减小,25℃~900℃之间,减小33.20%~59.11%,且温度越高减小越多,与体积应变均呈二次多项式相关;泊松比逐渐增大,25℃~900℃之间,增大164.96%~274.03%,且温度越高增加越多,与体积应变均呈线性相关。高温后的岩样在单轴压缩下均呈轴向劈裂破坏,并存在多个贯通裂纹;在三轴压缩下为宏观单一的贯通剪切破坏形态;三轴卸围压下破坏形态则比较复杂,常温时为高角度的局部剪切破坏,随温度升高,岩样变为贯通剪切破坏,到900℃时又变为局部剪切破坏。  相似文献   

17.
 岩体工程开挖是一个卸荷过程,通过裂隙岩体物理模型试验,研究2种卸荷应力路径下裂隙岩体的强度、变形及破坏特征,并探讨裂隙的扩展演化过程和力学机制。卸荷条件下裂隙岩体的强度、变形破坏及裂隙扩展均受裂隙与卸荷方向夹角及裂隙间的组合关系影响;卸荷速率及初始应力场大小主要影响岩体卸荷强度及次生裂缝的数量,对裂隙扩展方式影响相对较少;卸荷条件下裂隙扩展是在卸荷差异回弹变形引起的拉应力和裂隙面剪切力增大而抗剪力减小的综合作用下的破坏,且各个应力对裂隙扩展的影响大小与裂隙的倾角密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号