共查询到20条相似文献,搜索用时 0 毫秒
1.
Mixed-model assembly line sequencing is one of the most important strategic problems in the field of production management where diversified customers' demands exist. In this article, three major goals are considered: (i) total utility work, (ii) total production rate variation and (iii) total setup cost. Due to the complexity of the problem, a hybrid multi-objective algorithm based on particle swarm optimization (PSO) and tabu search (TS) is devised to obtain the locally Pareto-optimal frontier where simultaneous minimization of the above-mentioned objectives is desired. In order to validate the performance of the proposed algorithm in terms of solution quality and diversity level, the algorithm is applied to various test problems and its reliability, based on different comparison metrics, is compared with three prominent multi-objective genetic algorithms, PS-NC GA, NSGA-II and SPEA-II. The computational results show that the proposed hybrid algorithm significantly outperforms existing genetic algorithms in large-sized problems. 相似文献
2.
The current competitive situation increases the importance of realistically estimating product costs during the early phases of product and assembly line planning projects. In this article, several multi-objective algorithms using difference dominance rules are proposed to solve the problem associated with the selection of the most effective combination of product and assembly lines. The list of developed algorithms includes variants of ant colony algorithms, evolutionary algorithms and imperialist competitive algorithms. The performance of each algorithm and dominance rule is analysed by five multi-objective quality indicators and fifty problem instances. The algorithms and dominance rules are ranked using a non-parametric statistical test. 相似文献
3.
This paper addresses the operator assignment in predefined workstations of an assembly line to get a sustainable result of fitness function of cycle time, total idle time and output where genetic algorithm is used as a solving tool. A proper operator assignment is important to get a sustainable balanced line. To improve the efficiency and meet the desired target output within the time limit, a balanced assembly line is a must. Real world lines consist of a large number of tasks and it is very time consuming and crucial to choose the most suitable operator for a particular workstation. In addition, it is very important to assign the suitable operator at the right place as his skill of operating machines finally reflects in productivity or in the cost of production. To verify better assignments of workers, a genetic algorithm is adopted here. A heuristic is proposed to find out the sustainable assignment of operators in the predefined workstations. 相似文献
4.
5.
This paper documents a study carried out on the problem of designing an integrated assembly line when many workers with a variety of skills are employed. This study addresses the problem of selecting multi-functional workers with different salaries to match their skills and of assigning tasks to work stations when there are precedence restrictions among the tasks. The objective of this study is to minimise the total annual work station costs and the annual salary of the assigned workers within a predetermined cycle time. A mixed integer linear program is developed with a genetic algorithm in order to address the problem of resource restrictions related to integrated assembly line balancing. Numerical examples demonstrate the efficiency of the developed genetic algorithm. 相似文献
6.
Onur Serkan Akgündüz 《国际生产研究杂志》2013,51(17):5157-5179
A mixed-model assembly line (MMAL) is a type of production line that is capable of producing a variety of different product models simultaneously and continuously. The design and planning of such lines involve several long- and short-term problems. Among these problems, determining the sequence of products to be produced has received considerable attention from researchers. This problem is known as the Mixed-Model Assembly Line Sequencing Problem (MMALSP). This paper proposes an adaptive genetic algorithm approach to solve MMALSP where multiple objectives such as variation in part consumption rates, total utility work and setup costs are considered simultaneously. The proposed approach integrates an adaptive parameter control (APC) mechanism into a multi-objective genetic algorithm in order to improve the exploration and exploitation capabilities of the algorithm. The APC mechanism decides the probability of mutation and the elites that will be preserved for succeeding generations, all based on the feedback obtained during the run of the algorithm. Experimental results show that the proposed adaptive GA-based approach outperforms the non-adaptive algorithm in both solution quantity and quality. 相似文献
7.
J. Mukund Nilakantan 《工程优选》2016,48(2):231-252
Automation in an assembly line can be achieved using robots. In robotic U-shaped assembly line balancing (RUALB), robots are assigned to workstations to perform the assembly tasks on a U-shaped assembly line. The robots are expected to perform multiple tasks, because of their capabilities. U-shaped assembly line problems are derived from traditional assembly line problems and are relatively new. Tasks are assigned to the workstations when either all of their predecessors or all of their successors have already been assigned to workstations. The objective function considered in this article is to maximize the cycle time of the assembly line, which in turn helps to maximize the production rate of the assembly line. RUALB aims at the optimal assignment of tasks to the workstations and selection of the best fit robot to the workstations in a manner such that the cycle time is minimized. To solve this problem, a particle swarm optimization algorithm embedded with a heuristic allocation (consecutive) procedure is proposed. The consecutive heuristic is used to allocate the tasks to the workstation and to assign a best fit robot to that workstation. The proposed algorithm is evaluated using a wide variety of data sets. The results indicate that robotic U-shaped assembly lines perform better than robotic straight assembly lines in terms of cycle time. 相似文献
8.
In this paper, a novel stochastic two-sided U-type assembly line balancing (STUALB) procedure, an algorithm based on the genetic algorithm and a heuristic priority rule-based procedure to solve STUALB problem are proposed. With this new proposed assembly line design, all advantages of both two-sided assembly lines and U-type assembly lines are combined. Due to the variability of the real-life conditions, stochastic task times are also considered in the study. The proposed approach aims to minimise the number of positions (i.e. the U-type assembly line length) as the primary objective and to minimise the number of stations (i.e. the number of operators) as a secondary objective for a given cycle time. An example problem is solved to illustrate the proposed approach. In order to evaluate the efficiency of the proposed algorithm, test problems taken from the literature are used. The experimental results show that the proposed approach performs well. 相似文献
9.
10.
As a consequence of increasing interests in customised products, mixed-model lines have become the most significant components of today’s manufacturing systems to meet surging consumer demand. Also, U-shaped assembly lines have been shown as the intelligent way of producing homogeneous products in large quantities by reducing the workforce need thanks to the crossover workstations. As an innovative idea, we address the mixed-model parallel U-shaped assembly line design which combines the flexibility of mixed-model lines with the efficiency of U-shaped lines and parallel lines. The multi-line stations utilised in between two adjacent lines provide extra efficiency with the opportunity of assigning tasks into workstations in different combinations. The new line configuration is defined and characterised in details and its advantages are explained. A heuristic solution approach is proposed for solving the problem. The proposed approach considers the model sequences on the lines and seeks efficient balancing solutions for their different combinations. An explanatory example is also provided to show the sophisticated structure of the studied problem and explain the running mechanism of the proposed approach. The results of the experimental tests and their statistical analysis indicated that the proposed line design requires fewer number of workstations in comparison with independently balanced mixed-model U-lines. 相似文献
11.
Recent research has demonstrated the potential benefits of radio frequency identification (RFID) technology in the supply chain and production management via its item-level visibility. However, the RFID coverage performance is largely impacted by the surrounding environment and potential collisions between the RFID devices. Thus, through RFID network planning (RNP) to achieve the desired coverage within the budget becomes a key factor for success. In this study, we establish a novel and generic multi-objective RNP model by simultaneously optimising two conflicted objectives with satisfying the heterogeneous coverage requirements. Then, we design an improved multi-objective genetic algorithm (IMOGA) integrating a divide-and-conquer greedy heuristic algorithm to solve the model. We further construct a number of computational cases abstracted from an automobile mixed-model assembly line to illustrate how the proposed model and algorithm are applied in a real RNP application. The results show that the proposed IMOGA achieves highly competitive solutions compared with Pareto optimal solutions and the solutions given by four recently developed well-known multi-objective evolutionary and swarm-based optimisers (SPEA2, NSGA-II, MOPSO and MOPS2O) in terms of solution quality and computational robustness. 相似文献
12.
Within U-shaped assembly lines, the increase of labour costs and subsequent utilisation of robots has led to growing energy consumption, which is the current main expense of auto and electronics industries. However, there are limited researches concerning both energy consumption reduction and productivity improvement on U-shaped robotic assembly lines. This paper first develops a nonlinear multi-objective mixed-integer programming model, reformulates it into a linear form by linearising the multiplication of two binary variables, and then refines the weight of multiple objectives so as to achieve a better approximation of true Pareto frontiers. In addition, Pareto artificial bee colony algorithm (PABC) is extended to tackle this new complex problem. This algorithm stores all the non-dominated solutions into a permanent archive set to keep all the good genes, and selects one solution from this set to overcome the strong local minima. Comparative experiments based on a set of newly generated benchmarks verify the superiority of the proposed PABC over four multi-objective algorithms in terms of generation distance, maximum spread, hypervolume ratio and the ratio of non-dominated solution. 相似文献
13.
Imad Belassiria Mohamed Mazouzi Said ELfezazi Anass Cherrafi Zakaria ELMaskaoui 《国际生产研究杂志》2018,56(16):5324-5344
In this paper, an integrated approach for assembly line rebalancing problem (IALRP) is proposed to quickly react and find an optimal rebalancing of the line when disruptive event occurs because of product demand changes. This model is motivated by real-life application of an automotive cable manufacturer which provides more realistic constraints. To solve the problem, we propose a genetic algorithm (GA) hybridised with a heuristic priority rule-based procedure. This hybridisation is used to add more rich seeds to the initial population and consequently to improve the convergence capability and performance of the GA. After the disturbance, we aim to find a rebalance with the proposed approach to maximise the line efficiency and distributing the idle time across the workstations as equally as possible. To evaluate the efficiency of the proposed algorithm, set of samples collected from the literature are used. The real case study and the experiment results show the proposed approach is very effective and competitive. 相似文献
14.
A mixed-model assembly line is a type of production line which is used to assemble a variety of product models with a certain level of similarity in operational characteristics. This variety causes workload variance among other problems resulting in low efficiency and line stops. To cope with these problems, a hierarchical design procedure for line balancing and model sequencing is proposed. It is structured in terms of an amelioration procedure. On the basis of our evolutionary algorithm, a genetic encoding procedure entitled priority-based multi-chromosome (PMC) is proposed. It features a multi-functional chromosome and provides efficient representation of task assignment to workstations and model sequencing. The lean production perspective recognises the U-shape assembly line system as more advanced and beneficial compared to the traditional straight line system. To assure the effectiveness of the proposed procedure, both straight and U-shape assembly lines are examined under two major performance criteria, i.e., number of workstations (or line efficiency) as static criterion and variance of workload (line and models) as dynamic criterion. The results of simulation experiments suggest that the proposed procedure is an effective management tool of a mixed-model assembly line system. 相似文献
15.
This article addresses advanced available-to-promise (AATP) in mixed-model assembly line sequencing problems. In the developed framework, customers are prioritized with respect to 11 defined criteria using the technique for order of preference by similarity to ideal solution (TOPSIS) method, and order quantities are calculated using a nonlinear mathematical program. Next, a mixed binary nonlinear mathematical program is developed to determine the optimum sequence of the optimized order quantities to minimize the total lateness. Since the proposed models are intractable, a hybrid genetic algorithm–simulated annealing method is also developed. Finally, an industrial case study is reported, the results of which validate the developed AATP framework. 相似文献
16.
Şirin Barutçuoğlu 《国际生产研究杂志》2013,51(12):3691-3714
In the paper, we study a flexible assembly line design problem with equipment decisions. We assume the task times and equipment costs are correlated in the sense that for all tasks the cheaper equipment gives no smaller task time. Given the cycle time and number of workstations we aim to find the assignment of tasks and equipment to the workstations so as to minimise the total equipment cost. We develop a branch and bound algorithm that uses powerful lower bounds and reduction mechanisms. Our computational experiments have revealed that our algorithm can solve large-sized problem instances in reasonable solution times. 相似文献
17.
为减小物流配送中车辆路径优化这一NP难题的组合规模,增大其搜索空间及寻优效率,提出了一种分段编码方法,编码中的各段表示相应车辆路径的需求城市集合。以非完全连通配送网络为研究对象,基于分段遗传编码,构造了车辆路径优化问题的遗传算法,通过对编码各段超载、包容等的判断,得出一个关于需求城市的最优划分。最后利用改进的迪杰斯特拉算法,根据最优化分中的需求城市,求取最优的配送路径集。计算示例证明了该方法的有效性。 相似文献
18.
The increasing market demand for product variety forces manufacturers to design mixed-model assembly lines (MMAL) on which a variety of product models similar to product characteristics are assembled. This paper presents a method combining the new ranked based roulette wheel selection algorithm with Pareto-based population ranking algorithm, named non-dominated ranking genetic algorithm (NRGA) to a just-in-time (JIT) sequencing problem when two objectives are considered simultaneously. The two objectives are minimisation the number of setups and variation of production rates. This type of problem is NP-hard. Various operators and parameters of the proposed algorithm are reviewed to calibrate the algorithm by means of the Taguchi method. The solutions obtained via NRGA are compared against solutions obtained via total enumeration (TE) scheme in small problems and also against four other search heuristics in small, medium and large problems. Experimental results show that the proposed algorithm is competitive with these other algorithms in terms of quality and diversity of solutions. 相似文献
19.
U型生产单元可重构设施布局方法研究 总被引:1,自引:0,他引:1
针对制造企业生产单元重新布局的决策问题,以U型生产单元为研究对象,以物料搬运成本、单元重构成本和生产时间损失成本之和最低为优化目标,考虑了重新布局的预算约束以及各类惩罚约束,建立了单元生产可重构设施布局决策的集成模型。设计了决策问题的遗传算法,以实验测试方式确定遗传算法的参数设置,避免陷入局部最优,并通过实例求解,验证了模型和算法的可行性。根据U型单元现有布局、下一周期订单数量和产品工艺要求等信息,利用上述模型和算法进行分析和优化,为企业进行新一轮的生产组织提供决策支持。 相似文献
20.
This paper considers the problem of determining the optimal production rate for each item and the optimal cycle time for the family of items in a family production context with restrictions on the shelf-life of various items in the family. We investigate the impact of incorporating planned backorders into the system. We show that the model with planned backorders reduces to a model without backorders with modified holding costs and shelf-life. Therefore, the model with planned backorders can be analysed using the earlier model developed by Viswanathan and Goyal (1997). We also present several examples to demonstrate how incorporating planned backorders can reduce the total costs. 相似文献