首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate a multi-plant, production planning and distribution problem for the simultaneous optimisation of production, inventory control, demand allocation and distribution decisions. The objective of this rich problem is to satisfy the dynamic demand of customers while minimising the total cost of production, inventory and distribution. By solving the problem, we determine when the production needs to occur, how much has to be produced in each of the plants, how much has to be stored in each of the warehouses and how much needs to be delivered to each customer in each period. On a large real data-set inspired by a case obtained from an industrial partner, we show that the proposed integration is highly effective. Moreover, we study several trade-offs in a detailed sensitivity analysis. Our analyses indicate that the proposed scenarios give the company competitive advantage in terms of reduced total logistics cost, and also highlight more possibilities that become available taking advantage of an integrated approach towards logistics planning. These abundant opportunities are to be synergised and exploited in an interconnected open global logistics system.  相似文献   

2.
This work proposes mathematical models (MMs) for the capacitated lot-sizing problem with production carry-over and set-up splitting, which can handle two scenarios, namely (1) situation/scenario where the set-up costs and holding costs are product dependent and time independent, and with no backorders or lost sales, and (2) situation where the set-up costs and holding costs are product dependent and time dependent, and with no backorders or lost sales. Previously, in an existing study the authors had developed a MM for the same problem and situation where the set-up costs and holding costs are product dependent and time independent, i.e. our Scenario 1. We compare our proposed models with the model in the existing study that appears to be incorrect.  相似文献   

3.
4.
This paper considers a multi-level, multi-item, multi-period capacitated lot-sizing problem with sequence-dependent family set-up times, set-up carry over and uncertainty in levels due to uncertainty in inspection, rework and scrap. In this study, we, first, determined total processing time for each product of each family. Then, expected number of times associated with visiting each level of each product as well as amount of raw materials are calculated. We developed a mixed integer linear programming model with a numerical example and sensitivity analysis.  相似文献   

5.
Inventory lot-sizing and supplier selection problem has been studied in the literature considering mainly time-varying deterministic demand. However, in real life, most of the products exhibit non-stationary stochastic demand. In this context, we propose an integer linear programming model for inventory lot-sizing and supplier selection problem under non-stationary stochastic demand with all-units quantity discounts and fill rate constraints. Through detailed analysis of experimental results, we show the impacts of fill rate requirements and demand coefficient of variation on costs, inventory levels and order allocations.  相似文献   

6.
In this paper, we solve the optimal sequencing, lot-sizing and scheduling decisions for several products manufactured through several firms in a serial-type supply chain so as to minimise the sum of setup and inventory holding costs while meeting given demand from customers. We propose a three-phase heuristic to solve this NP-hard problem using a time-varying lot- sizing approach. First, based on the theoretical results, we obtain candidate sets of the production frequencies and cycle time using a junction-point heuristic. Next, we determine the production sequences for each firm using a bin-packing method. Finally, we obtain the production times of the products for each firm in the supply chain system by iteratively solving a set of linear simultaneous equations which were derived from the constraints. Then, we choose the best solution among the candidate solutions. Based on the numerical experiments, we show that the proposed three-phase heuristic efficiently obtains feasible solutions with excellent quality which is much better than the upper-bound solutions from the common cycle approach.  相似文献   

7.
In most production processes, defective items may result from an imperfect production system and the need of reworking them is inevitable in many production environments. Despite the great importance of rework in real-world manufacturing, the body of literature is very limited. This paper deals with the effects of defective items and rework on the Capacitated Lot-Sizing Problem (CLSP). We present a mixed-integer programming formulation of the CLSP with rework of defective items and minimum lot-size constraints on production lots. The formulation describes an imperfect production process that leads to a fraction of defective items that have to be reworked before they can be sold to customers. Detailed numerical experiments show that while the occurrence of defective items significantly increases the computational times, reasonably sized minimum lot-size constraints, besides their practical importance, can be a good strategy to accelerate the solution process.  相似文献   

8.
This paper proposes an integrated model for single item dynamic lot-sizing problem and Quality Inspection Planning (QIP). The objective is to provide a model of production planning that takes into account a targeted level of outgoing quality or an Acceptable quality level (AQL) when the manufacturing system inherently generates a proportion of defectives that increases significantly when the system switches from the in-control state to the out-of-control state. The average outgoing quality of each period of time of the planning horizon is bounded as a function of the inspection capacity. The effects of integrating QIP are analysed and discussed through several experiments representing different quality control system’s parameters, i.e. inspection capacity, inspection cost and AQL. The simulation results show that it is very important to take into account the inspection process into production planning decisions. This study will help the decision-makers to negotiate service levels or react properly to given customer quality requirements based on cost and lead time parameters in addition to their process characteristics in terms of capability and stability.  相似文献   

9.
Production planning and scheduling are usually performed in a sequential manner, thus generating unfeasibility conflicts. Moreover, solving these problems in complex manufacturing systems (with several products sharing different resources) is very challenging in production management. This paper addresses the solution of multi-item multi-period multi-resource single-level lot-sizing and scheduling problems in general manufacturing systems with job-shop configurations. The mathematical formulation is a generalisation of the one used for the Capacitated Lot-Sizing Problem, including detailed capacity constraints for a fixed sequence of operations. The solution method combines a Lagrangian heuristic, determining a feasible production plan for a fixed sequence of operations, with a sequence improvement method which iteratively feeds the heuristic. Numerical results demonstrate that this approach is efficient and more appropriate than a standard solver for solving complex problems, regarding solution quality and computational requirements.  相似文献   

10.
We address a multi-product capacitated lot-sizing problem with pricing. The objective is to maximise profit. The problem extends the multi-product capacitated lot-sizing problem (CLSP) found in the literature to include price as a decision variable, demand as a function of price, setup time, and more general holding costs. We present a heuristic procedure that can be used to solve large problem instances quickly with good solution quality. The results of computational testing are presented.  相似文献   

11.
We consider a stochastic version of the classical multi-item Capacitated Lot-Sizing Problem (CLSP). Demand uncertainty is explicitly modeled through a scenario tree, resulting in a multi-stage mixed-integer stochastic programming model with recourse. We propose a plant-location-based model formulation and a heuristic solution approach based on a fix-and-relax strategy. We report computational experiments to assess not only the viability of the heuristic, but also the advantage (if any) of the stochastic programming model with respect to the considerably simpler deterministic model based on expected value of demand. To this aim we use a simulation architecture, whereby the production plan obtained from the optimization models is applied in a realistic rolling horizon framework, allowing for out-of-sample scenarios and errors in the model of demand uncertainty. We also experiment with different approaches to generate the scenario tree. The results suggest that there is an interplay between different managerial levers to hedge demand uncertainty, i.e. reactive capacity buffers and safety stocks. When there is enough reactive capacity, the ability of the stochastic model to build safety stocks is of little value. When capacity is tightly constrained and the impact of setup times is large, remarkable advantages are obtained by modeling uncertainty explicitly.  相似文献   

12.
This research considers a stochastic lot-sizing problem with multi-supplier and quantity discounts. The objectives are to minimise total costs, where the costs include ordering cost, holding cost, purchase cost and shortage cost, and to maximise service level of the system. In this paper, we first formulate the stochastic lot-sizing problem as a multi-objective programming (MOP) model. We then transform the model into a mixed integer programming (MIP) model. Finally, an efficient heuristic dynamic programming (HDP) model is constructed for solving large-scale stochastic lot-sizing problems. An illustrative example with two cases for a touch panel manufacturer is used to illustrate the practicality of these models, and a sensitivity analysis is applied to understand the impact of the changes in parameters to the outcomes. The results demonstrate that the proposed two models are effective and accurate tools for determining the replenishment of touch panels from multiple suppliers for multi-periods.  相似文献   

13.
Capacitated lot-sizing with sequence dependent setup costs   总被引:3,自引:0,他引:3  
Knut Haase 《OR Spectrum》1996,18(1):51-59
In this paper we consider a single-stage system where a number of different items have to be manufactured on one machine. Expenditures for the setups depend on the sequence in which items are scheduled on the machine. Holding costs are incurred for holding items in inventory. The demand of the items has to be satisfied without delay, i.e. shortages are not allowed. The objective is to compute a schedule such that the sum of holding and setup costs is minimized with respect to capacity constraints. For this problem which we call capacitated lot-sizing problem with sequence dependent setup costs (CLSD) we formulate a new model. The main differences between the new model and the discrete lot-sizing problem with sequence dependent setup costs (DLSDSD), introduced by Fleischmann, is that continuous lot-sizes are allowed and the setup state can be preserved over idle time. For the solution of the new model we present a heuristic which applies a priority rule. Since the priority values are affected by two significant parameters, we perform a local search in the parameter space to obtain low cost solutions. The solution quality is analyzed by a computational study. The comparison with optimal solutions of small instances shows that the solution quality of our heuristic is acceptable. The Fleischmann approach for the DLSPSD computes upper bounds for our new problem. On the basis of larger instances we show that our heuristic is more efficient to solve the CLSD.  相似文献   

14.
In this paper, we integrate the three strategies that are important to most firms, namely pricing, lot-sizing and supplier selection. Combining the three objectives of total profit, inconsistency, and deficiency with a set of constraints, we formulate this integrated problem as a multi-objective nonlinear programming model, proposing a genetic algorithm (NSGA-II) that provides decision-makers with a number of Pareto-optimal solutions, one of which can be selected on the basis of the higher-level information. We analyse the trade-off between the different Pareto-optimal solutions and discuss the results of that analysis. We then evaluate the performance of NSGA-II compared with SPEA2 in solving the model, which shows NSGA-II performs better. Finally, concluding remarks and suggestions for future research are provided.  相似文献   

15.
During financial crisis, companies constantly need free cash flows to efficiently react to any uncertainty, thus ensuring solvency. Working capital requirement (WCR) has been recognized as a key factor for releasing tied up cash in companies. However, in literatures related to lot-sizing problem, WCR has only been studied in the single-level supply chain context. In this paper, we initially adopt WCR model for a multi-level case. A two-level (supplier–customer) model is established on the basis of the classic multi-level lot-sizing model integrated with WCR financing cost. To tackle this problem, we propose sequential and centralized approaches to solve the two-level case with a serial chain structure. The ZIO (Zero Inventory Ordering) property is further confirmed valid in both cases. This property allows us to establish a dynamic programming-based algorithm, which solves the problem in O(T4). Finally, numerical tests show differences in optimal plans obtained by both approaches and the influence of varying delays in payment on the WCR of both actors.  相似文献   

16.
We consider the problem of determining the lot sizes that satisfy the demands of remanufactured products over a given planning horizon with discrete time periods. Remanufacturing, in which used or end-of-life products are restored to like-new condition, typically consists of disassembly, reprocessing and reassembly processes, and hence the lot sizes are determined for each of the three processes. The objective is to minimise the sum of setup and inventory holding costs occurring at the three processes. To represent the problem mathematically, we suggest a mixed integer programming model by combining the existing ones for disassembly and assembly systems. After proving that the problem is NP-hard, we suggest two dynamic programming based heuristics, called the aggregation and the decomposition type heuristics in this paper. Computational experiments were done on various test instances, and the results show that the two heuristics give near-optimal solutions in a short amount of computation time. Also, the performances of the heuristics are compared according to different values of problem parameters.  相似文献   

17.
Due to the repetitive nature of inventory planning over the planning horizon, the operator in charge has to perform planning tasks repetitively, and consequently s/he becomes more familiar with the tasks over time. Familiarity with the tasks suggests that learning takes place in inventory planning. Even though the operator’s learning over time might improve his/her efficiency, prior research on fuzzy lot-sizing problems mostly overlooked the effect of human learning in their models and its impact on the operator’s performance. To close the research gap in this area, this paper models the operator's learning in a fuzzy economic order quantity model with backorders. The paper models a situation where the operator applies the acquired knowledge over the cycles in setting the fuzzy parameters at the beginning of every planning cycle, where his/her learning ability includes the cognitive and motor capabilities of a human being. Subsequently, a mathematical model which takes account of a two-stage human learning over the planning cycles is developed, which is then analytically investigated using sample data-sets. The results indicate that both operator’s capabilities, cognitive and motor, affect the efficiency of the fuzzy lot-sizing inventory model, but the influence of the cognitive capability is more profound, which in turn suggests the importance of training programmes for the workforces. The results of the sensitivity analysis also draw some managerial insights for the case that some model parameters vary over the planning horizon.  相似文献   

18.
This research deals with the single machine multi-product capacitated lot-sizing and scheduling problem (CLSP) with sequence-dependent setup times and setup costs. The CLSP determines the production quantities and the sequence to satisfy deterministic and dynamic demand during multiple periods. The objective is to minimise the total sum of the inventory holding costs and the sequence-dependent setup costs. We consider a special form of sequence-dependent setup times where the larger product we produce next, the more setup time we need. As a solution approach, we propose a two-level hierarchical method consisting of upper-level planning and the lower-level planning. In the upper-level planning, we solve the lot-sizing problem with estimated sequence-independent setup times utilising the characteristic of the special structure of setup times. Then we solve the scheduling problem in the lower-level planning. The proposed method is compared with the single-level optimal CLSP solution and an existing heuristic developed for the uniform structure of setup times.  相似文献   

19.
The paper presents an ant colony optimization metaheuristic for collaborative planning. Collaborative planning is used to coordinate individual plans of self-interested decision-makers with private information in order to increase the overall benefit of the coalition. The method consists of a new search graph based on encoded solutions. Distributed and private information are integrated via voting mechanisms and via a simple but effective collaborative local search procedure. The approach is applied to a distributed variant of the multi-level lot-sizing problem and evaluated by means of 352 benchmark instances from the literature. The proposed approach clearly outperforms existing approaches on the sets of medium- and large-sized instances. While the best method in the literature so far achieves an average deviation from the best-known non-distributed solutions of 75% for the set of the largest instances, for example, the presented approach reduces the average deviation to 7%.  相似文献   

20.
Part I of this three-part series described semiconductor supply chains from the decision-making and functional perspectives, using this as a framework to review the industrial engineering and operations research literature on the problems arising in these supply chains. Part I then reviewed the literature on Strategic Network Design, supply chain coordination, sustainability and simulation-based decision support. This paper, Part II, reviews the areas of Demand Planning, Inventory Management and Capacity Planning in semiconductor supply chains. Part III concludes the series by discussing models to support Master Planning, Production Planning and Demand Fulfilment in this industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号