共查询到17条相似文献,搜索用时 62 毫秒
1.
基于生成对抗网络的图像修复算法在处理图像信息大面积丢失的情况时,效果比传统算法有了较大提升,但是在许多细节方面仍有待改进,例如使修复区域与保留区域在语义上更加合理,被修复区域的边缘需要保持连贯性,修复区域需要有丰富的纹理细节。针对以上问题,在现有的生成对抗网络修复算法的基础上提出了改进,结合非局部注意力机制,对输入图像进行多级合并和设置缓冲层,添加辅助判别器。通过对比实验结果,验证了改进模型的有效性,得到的修复图像更符合人眼视觉系统的要求。 相似文献
2.
3.
针对目前基于生成对抗网络(GAN)的图像修复算法存在修复效果的视觉连续性不佳、网络训练过程中模型崩溃等问题,提出一种基于双判别器的生成对抗网络的修复算法。该方法将WGAN-GP的损失函数引入全局判别器和局部判别器中,并结合改进的上下文内容损失来训练网络模型,修复破损区域。在CelebA数据集以峰值信噪比PSNR和结构相似性SSIM的标准下的实验结果证明,该算法提高了图像修复结果的质量和训练稳定性。 相似文献
4.
为解决当前基于生成对抗网络的深度学习网络模型在面对较复杂的特征时存在伪影、纹理细节退化等现象, 造成视觉上的欠缺问题, 提出了连贯语义注意力机制与生成对抗网络相结合的图像修复改进算法. 首先, 生成器使用两阶段修复方法, 用门控卷积替代生成对抗网络的普通卷积, 引入残差块解决梯度消失问题, 同时引入连贯语义注意力机制提升生成器对图像中重要信息和结构的关注度; 其次, 判别器使用马尔可夫判别器, 强化网络的判别效果, 将生成器输出结果进行反卷积操作得到最终修复后的图片. 通过修复结果以及图像质量评价指标与基线算法进行对比, 实验结果表明, 该算法对缺失部分进行了更好地预测, 修复效果有了更好的提升. 相似文献
5.
视频监控、军事目标识别以及消费型摄影等众多领域对图像清晰度有很高的要求.近年来,深度神经网络在视觉和定量评估的应用研究中取得较大进展,但是其结果一般缺乏图像纹理的细节,边缘过度平滑,给人一种模糊的视觉体验.本文提出了一种基于生成对抗网络的图像清晰度提升方法.为了更好的传递图像的细节信息,采用改进的残差块和跳跃连接作为生... 相似文献
6.
通常情形下,现有的图像生成模型都采用单次前向传播的方式生成图像,但实际中,画家通常是反复修改后才完成一幅画作的;生成对抗模型(Generative Adversarial Networks,GAN)能生成图像,但却很难训练.在保证生成图像质量的前提下,效仿作画时的不断更新迭代,以提升生成样本多样性并增强样本语义,同时引入Wasserstein距离,提出了Wasserstein图像循环生成对抗网络模型,简称WIRGAN(Wasserstein Image Recurrent Generative Adversarial Networks Model).WIRGAN定义了生成模型和判别模型,其中,生成模型是由一系列结构相同的神经网络模型组成的循环结构,用时间步骤T控制生成模型的循环次数,用于迭代式生成图像,并以最后一个循环结构的生成图像作为整个生成模型的输出;判别模型也由神经网络构建,结合权重剪枝技术,用来判别输入图像是生成的还是真实的.WIRGAN利用Wasserstein距离作为目标函数,将生成模型和判别模型进行博弈对抗训练.另外,由于模型存在难以优化的问题,本文引入了梯度惩罚来解决此类问题,进一步提出了梯度惩罚优化的Wasserstein图像循环生成对抗网络模型(Gradient Penalty Optimized Wasserstein Image Recurrent Generative Adversarial Networks Model,GP-WIRGAN).最后,WIRGAN和GP-WIRGAN在MNIST、CIFAR10、CeUN四个数据集上进行了基础学习能力、模型间GAM自比较、模型内GAM自比较、初始得分比较、图像生成可视化、时间效率比较等6组实验,采用生成对抗矩阵(Generative Adversarial Metric,GAM)和起始分数(Inception Scores)进行评估,结果表明,本文提出的WIRGAN、GP-WIRGAN具有良好的稳定性,可以生成高质量的图像. 相似文献
7.
视频监控、军事目标识别以及消费型摄影等众多领域对图像清晰度有很高的要求.近年来,深度神经网络在视觉和定量评估的应用研究中取得较大进展,但是其结果一般缺乏图像纹理的细节,边缘过度平滑,给人一种模糊的视觉体验.本文提出了一种基于生成对抗网络的图像清晰度提升方法.为了更好的传递图像的细节信息,采用改进的残差块和跳跃连接作为生成网络的主体架构,生成器损失函数除了对抗损失,还包括内容损失、感知损失和纹理损失.在DIV2K数据集上的实验表明,该方法在提升图像清晰度方面有较好的视觉体验和定量评估. 相似文献
8.
图像修复是一项利用缺损图像中已知信息对缺损区域信息进行估计修复的技术。针对大面积语义信息缺失的图像进行修复时,若训练数据集较小且图像背景相对复杂,则基于生成模型的修复结果常出现模糊、伪影和视觉相似度差等问题。针对上述问题,文中提出了一种基于密集卷积生成对抗网络的图像修复算法。该算法采用生成对抗网络作为图像修复的基本框架。首先,利用密集卷积块构建具有编解码结构的生成网络,不但加强了图像特征的提取,提高了图像修复能力,而且避免了深度增加引起的梯度消失问题。其次,在编码和解码结构之间引入跳跃连接,解决了网络层间信息传递丢失的问题。然后,在网络优化过程中,结合重建损失、对抗损失和TV损失来训练网络模型,增强了网络稳定性。最后,分别在CelebA和Car两个数据集上进行实验,所提算法的修复结果在视觉效果、峰值信噪比PSNR和结构相似度SSIM 3个方面均优于3种代表性图像修复算法,其有效性得到验证。 相似文献
9.
基于生成对抗网络的图像修复算法在修复大尺寸缺失图像时,存在图像失真较多与判别网络性能不可控等问题,基于谱归一化条件生成对抗网络,提出一种新的图像修复算法。引入谱归一化来约束判别网络的判别性能,间接提高修复网络的修复能力,并根据控制判别网络性能对谱归一化进行理论分析。通过类别信息约束特征生成,保证修复图像的内容不变性,引入扩展卷积算子对待修复图像进行像素级操作,解决修复图像缺乏局部一致性的问题。在此基础上,运用PSNR、SSIM等图像评价方法及分片Wasserstein距离、Inception分数、流形距离度量、GAN-train和GAN-test等流形结构相似度评价指标对修复图像进行综合评价。实验结果表明,与CE、GL等算法相比,该算法获得的修复图像在主观感受和客观评价指标上均有明显提高。 相似文献
10.
11.
12.
13.
生成式对抗网络(Generative adversarial networks, GAN)是主要的以无监督方式学习深度生成模型的方法之一.基于可微生成器网络的生成式建模方法, 是目前最热门的研究领域, 但由于真实样本分布的复杂性, 导致GAN生成模型在训练过程稳定性、生成质量等方面均存在不少问题.在生成式建模领域, 对网络结构的探索是重要的一个研究方向, 本文利用胶囊神经网络(Capsule networks, CapsNets)重构生成对抗网络模型结构, 在训练过程中使用了Wasserstein GAN (WGAN)中提出的基于Earth-mover距离的损失函数, 并在此基础上加以条件约束来稳定模型生成过程, 从而建立带条件约束的胶囊生成对抗网络(Conditional-CapsuleGAN, C-CapsGAN).通过在MNIST和CIFAR-10数据集上的多组实验, 结果表明将CapsNets应用到生成式建模领域是可行的, 相较于现有类似模型, C-CapsGAN不仅能在图像生成任务中稳定生成高质量图像, 同时还能更有效地抑制模式坍塌情况的发生. 相似文献
14.
图像修复作为深度学习领域的一个研究热点,在人们现实生活中有着重要的意义。现有图像修复算法存在各种问题,导致视觉上无法达到人们的要求。针对现有图像修复算法精确度低、视觉一致性差以及训练不稳定等缺陷,提出了一种基于生成式对抗网络(GAN)模型的图像修复算法。该算法主要对判别器的网络结构进行改进,在全局判别器和局部判别器的基础上引入多尺度判别器。多尺度判别器在不同分辨率的图像上进行训练,不同尺度的判别器具有不同的感受野,能够引导生成器生成更全局的图像视图以及更精细的细节。针对GAN训练中经常出现的梯度消失或梯度爆炸问题,使用WGAN(Wasserstein GAN)的思想,采用EM距离模拟样本数据分布。在CelebA、ImageNet以及Place2图像数据集上对该算法的网络模型进行了训练和测试,结果显示与先前的算法模型相比,该算法提高了图像修复的精确度,能够生成更为逼真的修复图片,并且适用于多种类型图片的修复。 相似文献
15.
图像修复是图像处理的一个重要问题,目的是利用计算机视觉技术自动恢复退化图像中损坏或丢失的部分,被广泛应用于影视特技制作、图像编辑、数字化文物保护等领域。近几年,以生成式对抗网络(GAN)为代表的深度学习技术在计算机视觉和图像处理领域大获成功,基于GAN的图像修复逐渐成为主流,受到了广泛关注。针对图像修复的关键问题,文章对GAN和基于GAN的修复方法进行理论分析,首先整理分析了传统的基于人工特征的经典图像修复方法,其次总结了近年来基于GAN的代表性图像修复算法,并进行归纳分类,探讨了各类方法的特点和局限性。然后对图像修复模型常用的评价指标和公开数据集进行整理和分析,最后阐述了图像修复面临的挑战,对图像修复技术未来的发展方向进行展望。 相似文献
16.
在傅里叶频域中,由于逆滤波对加性噪声特别敏感,使得恢复后的图像仍然非常模糊.针对这一问题,我们提出了一种基于维纳滤波器和生成对抗网络的动态模糊图像处理方法.首先使用维纳滤波去模糊算法,通过均方差最小化去除噪声,但由于无法判断拍摄装置的移动范围并未得到预期效果.再考虑使用自由性强、不受预定条件分布的生成对抗网络模型(GAN).定义一个类生成器G(y)和类判别器D(x),通过机器学习的方式进行反复学习和反馈,直至达到模型无法判别生成数据样本S(y)和真实数据样本r(x)时,图像近似还原成功.同时,引入“模糊核”概念,模拟图像的模糊轨迹,进行精确还原.最后,由于肉眼很难对图像的还原程度做定量判断.因此我们利用三个评价指标对这些图像进行客观评价——峰值性噪比PSNR、模糊系数KBlur、质量因素Q.实验结果表明,在该方法下的图像的三个评价指标在一定程度上有所改善,从而得到图像还原较为成功的结论. 相似文献
17.
与基于图像增强的去雾算法和基于物理模型的去雾算法相比,基于深度学习的图像去雾方法在一定程度上提高计算效率,但在场景复杂时仍存在去雾不彻底及颜色扭曲的问题.针对人眼对全局特征和局部特征的感受不同这一特性,文中构建基于生成对抗网络的图像去雾算法.首先设计多尺度结构的生成器网络,分别以全尺寸图像和分割后的图像块作为输入,提取图像的全局轮廓信息和局部细节信息.然后设计一个特征融合模块,融合全局信息和局部信息,通过判别网络判断生成无雾图像的真假.为了使生成的去雾图像更接近对应的真实无雾图像,设计多元联合损失函数,结合暗通道先验损失函数、对抗损失函数、结构相似性损失函数及平滑L1损失函数训练网络.在合成数据集和真实图像上与多种算法进行实验对比,结果表明,文中算法的去雾效果较优. 相似文献