共查询到18条相似文献,搜索用时 46 毫秒
1.
《计算机工程与应用》2016,(6):204-208
提出一种适用于去除高密度椒盐噪声的图像滤波算法,以进一步提高输出图像的峰值信噪比。利用直方图形状判定椒盐噪声的两种灰度值,用于噪声像素的检测与定位。对于非噪声像素,直接输出灰度值;对于噪声像素,沿其邻域的k个方向分别搜索一个距离最近的非噪声像素,然后以欧式距离倒数为权重,采用k个非噪声像素的加权灰度均值作为噪声像素的输出灰度值。测试了不同的方向数k对滤波性能的影响,确定了k的最佳取值为4。采用该方法对椒盐噪声密度为10%到90%的图像进行滤波,输出图像的峰值信噪比比现有同类方法提高了1.8~4.7 d B。该方法有效提高了高密度椒盐噪声图像的滤波质量,处理速度满足实时要求。 相似文献
2.
椒盐噪声是造成图像污染的主要因素之一,椒盐去噪是图像去噪领域的研究热点。方向加权中值滤波算法计算噪声点滤波输出时存在一定的问题,比如,未排除近邻噪声点的干扰,对方向的估计不准确,对局部灰度特性刻画不完整等。为此,提出一种方向加权均值滤波算法。此算法先根据方向灰度差异和灰度极值判断检测噪声点,然后根据对局部窗口噪声强度的估计自适应地选择递归或非递归滤波窗口的加权灰度均值作为滤波输出。仿真实验结果表明,提出的算法与现有的两种方向加权中值滤波算法相比,PSNR普遍提高了2~3dB和5~6dB,噪声密度高时提高的幅度更加明显;速度提高了接近10倍和30倍。 相似文献
3.
4.
根据图像直方图的特点,针对椒盐噪声,提出了一种基于直方图的加权均值滤波方法。该方法首先通过寻找局部极值确定噪声点,并对图像的所有像素做分类标记。处理过程中只考虑标记为噪声的点,以噪声图像的直方图函数作为滤波器的权值,最后将领域内非噪声点的加权均值作为滤波输出。实验结果表明该方法优于中值滤波方法。 相似文献
5.
提出了一种新的基于局部空间像素特征的椒盐噪声自适应加权滤波算法。该算法首先对含噪图像逐点进行噪声检测,把所有像素分为含噪像素点和信号像素点;然后采用自适应加权滤波方法,对检测到的噪声点进行滤波,滤波权重由确定的数学公式来确定,自适应于滤波窗内临近像素的局部特征。实验结果表明,该算法不仅可以有效地除去椒盐噪声,又可以较好地保持图像边缘细节,尤其在噪声密度较大时,效果明显优于传统的中值滤波算法。 相似文献
6.
针对传统滤波方法对纹理比较细腻的图像以及高噪声密度图像的处理能力欠佳的缺陷,提出了一种基于BP神经网络噪声检测的自适应加权均值滤波方法.用训练好的BP神经网络检测出图像中被椒盐噪声污染的像素并对其进行标记,对检测出的噪声点进行自适应加权均值滤波,信号点则保持不变,从而实现了对图像细节的有效保护.仿真表明了该算法滤波性能和细节保护能力均优于各种传统滤波算法. 相似文献
7.
8.
9.
为快速准确地滤除图像中的脉冲噪声并较好地保持图像的纹理细节和边缘结构,提出一种基于修剪均值与高斯加权中值滤波的图像去噪算法。根据脉冲噪声的灰度特征与统计特征,以局部统计方式进行噪声检测,将灰度取最小值或最大值且与邻域像素相关性较小的像素识别为噪声像素。对于图像平滑区域和细节区域中的噪声像素,使用自适应修剪均值和高斯加权中值滤波算法进行去噪处理。实验结果表明,该算法在视觉效果、峰值信噪比、结构相似性及计算速度上均优于对比算法,并且能够在彻底滤除噪声的同时,较好地保持图像的纹理细节和边缘结构。 相似文献
10.
基于局部直方图的加权均值滤波器 总被引:1,自引:0,他引:1
针对受椒盐噪声不同程度污染的灰度图像滤波问题,提出了一种基于局部直方图的加权均值滤波算法。该算法针对椒盐噪声特点,对含噪图像进行噪声检测,建立噪声标记矩阵;对标记为信号的像素不做处理,标记为噪声的像素依据其邻域像素污染程度采取不同窗口尺寸的加权均值滤波,像素权值由噪声点所在区域的局部直方图确定。对不同噪声率污染的测试图像仿真结果表明,该算法在有效抑制噪声的同时能较好地保持图像的细节信息。最后,通过与中值滤波和其他一些改进算法的滤波效果比较,证明了该算法的有效性。 相似文献
11.
12.
针对相对匀速运动造成的图像模糊问题,假设目标在像平面内并行于X轴方向作匀速运动;在较严格数学推导下建立基于Z变换的退化及恢复模型,将差分方程转化为简单的代数方程求解;针对算法容易造成噪声积累使复原图像质量下降的问题,在算法中加入模糊加权均值滤波算子,并给出了完整的算法实现。仿真结果表明,提出的恢复算法在提高模糊图像恢复速度的同时,能有效地抑制噪声、防止噪声的不断扩散,使复原图像的质量得到明显的改善,算法对模糊宽度的变化不敏感,较维纳滤波恢复算法有一定的稳健性及优越性。 相似文献
13.
14.
15.
针对非局部均值滤波算法中难以找到一个全局最优的滤波参数h的问题,给出一种新的该参数的优化方法,并将其应用于传统非局部均值滤波算法的改进。首先基于SUSAN算法提取噪声图像的边缘信息,然后在大量实验的基础上,利用线性回归和非线性回归分析方法建立h与边缘信息、噪声方差之间的优化模型。最后,将基于该优化模型的非局部均值算法应用于多幅图像的去噪处理中。实验结果表明,新算法改善了传统非局部均值算法的去噪性能,取得了良好的滤波效果。 相似文献
16.
17.
According to the B-spline convolution mask, first, the contrast sensitiveness (CS) is computed and then is viewed as a noise sensitiveness coeficient (NSC) to adaptively determine a noise-recognized threshold value. Based on the noise density function (NDF) in a 3×3 window, the filtering window size is adaptively adjusted, and then a median filter is used to eliminate the noise-marked pixels. The experiment results show that the proposed algorithm can preserve image detail information well and effectively remove the noises, particularly the impulse noises that is also called salt-and-pepper noises superimposed on the computed tomography (CT) and magnetic resonance imaging (MRI) medical images. 相似文献
18.
滤除图象噪声时,虽然利用的先验知识越多,其滤波效果越好,但是一般情况下,由于只能得到一幅被污染的图象,无法获得这些先验知识,因而滤波效果较差。为了解决该问题,提出了一种去除图象中椒盐噪声的新型滤波器。该滤波器首先给出了一种有效的估计原图象直方图的方法,进而利用估计直方图的信息来进行滤波;然后对滤波窗口中的像素进行一种排除最大和最小灰度值的操作,以滤除椒盐噪声点。实验表明,该方法滤波效果优于传统的滤波器和其他模糊滤波器,特别是当噪声概率超过0.3时,这种优势尤为明显。 相似文献