首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于分段时间弯曲距离的时间序列挖掘   总被引:22,自引:1,他引:22  
在时间序列库中的数据挖掘是个重要的课题,为了在挖掘的过程中比较序列的相似性,大量的研究都采用了欧氏距离度量或者其变形,但是欧氏距离及其变形对序列在时间轴上的偏移非常敏感.因此,采用了更鲁棒的动态时间弯曲距离,允许序列在时间轴上的弯曲,并且提出了一种新的序列分段方法,在此基础上定义了特征点分段时间弯曲距离.与经典时间弯曲距离相比,大大提高了效率,而且保证了近似的准确性.  相似文献   

2.
基于分段线性动态时间弯曲的时间序列聚类算法研究   总被引:4,自引:0,他引:4  
时间序列是一类重要的复杂类型数据,时间序列知识发现正成为知识发现的研究热点之一。欧几里德距离及其扩展作为相似测度被广泛应用于时间序列的比较中,但是这种距离测度时数据没有好的鲁棒性。动态时间弯曲技术是基于非线性动态编程的一种模式匹配算法,但是其计算复杂性相当高。本文提出了基于时间序列分段线性表示的动态时间弯曲算法,通过计算线性分段序列数据之间的最短弯曲路径来获得序列的匹配。对综合控制时间序列数据进行基于不同距离测度的聚类分析对比结果表明本文提出的算法有很高的精度和时振幅差异、嘈声和线性漂移有强的鲁棒性,大大降低计算复杂性,具有良好的应用价值。  相似文献   

3.
随着计算机软、硬件的进步,人们利用信息技术产生和搜集数据的能力大幅度提高.作为数据挖掘的重要研究课题之一,时间序列的挖掘与预测近几年发展迅速.本文时时间序列的分段线性化表示进行了研究,采用新的分段线性化表示方法建立了序列相似性度量准则,弥补了以往度量准则对时间轴上伸缩的变化敏感的问题.新的表示方法和相似性度量准则使时间序列数据更容易应用传统的数据挖掘方法.  相似文献   

4.
针对动态时间弯曲方法计算时间过长的问题,提出增量动态时间弯曲来度量较长时间序列之间的相似性。首先利用动态时间弯曲方法对历史时间序列数据进行相似性度量,得到相应的历史最优弯曲路径和路径中各元素的累积距离代价。其次,通过逆向弯曲度量方法完成当前序列数据 的相似性度量,结合历史数据信息找到与历史弯曲路径相交且度量时间序列距离为当前最小值的新路径,进而实现增量动态时间弯曲的相似性度量。该方法不仅具有良好的度量质量,还具有较高的时间效率。数值实验表明,对于大部分时间序列数据集,新方法的分类准确率和计算性能要优于经典动态时间弯曲。  相似文献   

5.
魏国强  周从华  张婷 《计算机与数字工程》2021,49(11):2299-2304,2406
针对常用方法无法准确度量多元时间序列相似程度的问题,提出一种基于多维分段和动态权重动态时间弯曲距离的多元时间序列相似性度量方法.首先对多元时间序列进行多维分段拟合,选取拟合段的斜率、均值和时间跨度作为每一段的特征,在对多元时间序列降维的同时也保留了变量之间的相关性;然后提出一种动态权重动态时间弯曲距离度量方法计算多元时间序列特征矩阵之间的距离,避免了直接使用动态时间弯曲距离造成的畸形匹配问题.最终实验结果也验证了该方法在多种类型的数据集上都能取得较高的度量精度,表明了该方法的有效性.  相似文献   

6.
在时间序列相似性的研究中,通常采用的欧氏距离及其变形无法对在时间轴上发生伸缩或弯曲的序列进行相似性度量,本文提出了一种基于分段极值DTW距离的时间序列相似性度量方法可以解决这一问题。在动态时间弯曲(DTW)距离的基础上,本文定义了序列的分段极值DTW距离,并阐述了其完整的算法实现。与传统的DTW距离相比,分段极值DTW距离在保证度量准确性的同时大大提高了相似性计算的效率。文中最后运用MATLAB作对比实验,并给出实验结果数据,验证了该度量方法的有效性与准确性。  相似文献   

7.
一种基于DTW的新型故事时间序列相似性度量方法   总被引:1,自引:0,他引:1  
现有时间序列相似性度量方法在进行股市序列相似性分析时,通常忽略成交量等其他重要因素对股价的影响,从而导致序列聚类、分类不精确。针对这一问题,本文提出了新的股市时间序列相似性度量方法。该方法在动态时间弯曲算法的基础上,通过引进时间衰竭因子,并结合成交量因素,给出了股市序列的最终度量公式。为了证明提出方法的可行性和有效性,本文实验部分通过选取家电等三个行业中的股票数据进行测试。实验结果表明,基于动态时间弯曲(Dynamic time warping,DTW)的新型股市时间序列相似性度量方法能够在保持股票序列形态特征的基础上,较好地解决股市技术分析中量价关系问题,从而更有效地应用于股市技术分析里关于模式发现等领域。  相似文献   

8.
为了更好地体现时间序列的形态特征,并探索更适合于较长时间序列之间相似性度量的方法,在动态时间弯曲算法的基础上进行改进,提出了基于分层动态时间弯曲的序列相似性度量方法。对时间序列进行多层次分段,并从分段中均匀抽取相对应的层次分段子序列,然后将层次分段子序列抽象为三维空间的点(反映了分段子序列的均值、长度和趋势)进行相似性度量,最后综合各个层次的相似性度量作为结果。实验表明,在参数设置合理的情况下,此方法能获得较高的序列相似性度量准确度和效率。  相似文献   

9.
目前的自回归滑动平均(ARMA)建模方法由于只利用了观测数据的高阶自协方差构建Yule-Walker方程,而没有利用观测数据的低阶自协方差信息,导致观测噪声方差的估计精度不高,并且在自回归(AR)阶次p小于或等于滑动平均(MA)阶次q时无法估计出观测噪声方差.为此,本文提出了一种单独估计观测噪声方差的新方法,即先将ARMA模型近似为一高阶AR模型,再构建从观测数据1阶自协方差开始的Yule-Walker方程.由于充分利用了观测数据的统计信息,有利于提高观测噪声方差的估计精度,为后续的AR和MA参数估计精度的提高奠定了基础,也解决了p小于或等于q时观测噪声方差无法估计的问题,仿真和实验结果验证了该方法的有效性.  相似文献   

10.
非线性时间序列建模的混合自回归滑动平均模型   总被引:6,自引:2,他引:6  
提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征.  相似文献   

11.
用基于移动均值的索引实现时间序列相似查询   总被引:2,自引:0,他引:2  
林子雨  杨冬青  王腾蛟 《软件学报》2008,19(9):2349-2361
提出了基于移动均值的索引来解决子序列匹配中的"ε-查询"问题:提出并证明了基于移动均值的缩距定理和缩距比关系定理,后者具有很好的"裁减"能力,可以在相似查询时淘汰大部分不符合条件的候选时间序列,从而达到快速相似查找的目的;引入了由Jagadish等人提出的BATON~*-树,并在此基础上适当修改,建立了MABI索引,极大地加快了相似查询过程;最后,在一个股票交易数据集上进行了实验,证明了MABI索引的良好性能.  相似文献   

12.
基于动态时间弯曲的时序数据聚类算法的研究   总被引:14,自引:0,他引:14  
时间序列是一类重要的复杂类型数据,时间序列知识发现正成为知识发现的研究热点之一。欧几里的距离及其扩展作为相似测度被广泛应用于时间序列的比较中,但是这种距离测度对数据没有好的鲁棒性。动态时间弯曲技术是基于非线性动态编程的一种模式匹配算法。该文提出了基于动态时间弯曲技术的相似搜索算法,通过计算时序数据之间的最短弯曲路径来获得序列的匹配。对综合控制时序数据进行基于不同距离测度的聚类分析对比结果表明该文提出的算法有很高的精度和对振幅差异、噪声和线性漂移有强的鲁棒性,具有良好的应用价值。  相似文献   

13.
为了进一步改善和提高基于模式的时间序列趋势相似性度量效果,在时间序列分段线性表示的基础上,依据分段子序列的均值及其线性拟合函数的导数符号,实现时间序列的分段模式化,以模式之间的异同性定义模式匹配距离,借鉴动态时间弯曲(Dynamic Time Warping,DTW)的动态规划原理,提出一种动态模式匹配方法(Dynamic Pattern Matching,DPM)。实验结果表明,该方法能够在不同压缩率条件下,准确度量等长时间序列的趋势相似性,而且时间消耗较低。时间序列不等长作为存在数据缺失的一种表现形式,该方法的度量效果与数据缺失比例之间的关系值得进一步的深入研究。  相似文献   

14.
郝石磊  王志海  刘海洋 《软件学报》2022,33(5):1817-1832
时间序列分类问题是时间序列数据挖掘中的一项重要任务, 近些年受到了越来越广泛的关注. 该问题的一个重要组成部分就是时间序列间的相似性度量. 在众多相似性度量算法中, 动态时间规整是一种非常有效的算法,目前已经被广泛应用到视频、音频、手写体识别以及生物信息处理等众多领域. 动态时间规整本质上是一种在边界及时间一致性约束下...  相似文献   

15.
时间序列周期模式挖掘的周期检测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
王阅  高学东  武森  陈敏 《计算机工程》2009,35(22):32-34
周期是时间序列的重要特征之一,用于精确描述时间序列并预测其发展趋势。在现有周期模式挖掘算法中,周期长度由用户事先定义,忽略了噪声的存在。在ERP度量和时间弯曲算法的基础上,提出一种新的周期长度检测方法。该方法可以在时间轴上实现弯曲,包括延伸和平移。它受噪声干扰的影响较小,实验结果表明其性能优于原有周期检测算法。  相似文献   

16.
DTW(Dynamic Time Warping)算法被广泛应用于序列数据比对,以度量序列间距离,但算法较高的时间复杂度限制了其在长序列比对上的应用。提出基于自适应搜索窗口的序列相似比对算法(ADTW),算法利用分段聚集平均(Piecewise Aggregate Approximation,PAA)策略进行序列抽样得到低精度序列,然后计算低精度序列下的比对路径,并根据低精度距离矩阵上的梯度变化预测路径偏差,限制路径搜索窗口的拓展范围;随后算法逐步提高序列精度,并在搜索窗口内修正路径、计算新的搜索窗口,最终,实现DTW距离和相似比对路径的快速求解。对比FastDTW,ADTW算法在同等度量准确率下提高计算效率约20%,其时间复杂度为[O(n)]。  相似文献   

17.
为了解决现有时间序列的分段线性表示方法忽略时间序列的全局特征, 局限于局部最优的问题, 本文通过研究时间序列的趋势, 发现了时间序列的波动特性, 将时间序列的趋势变化分为上下两层, 在上下两层分别剔除趋势保持点. 实验结果表明, 该分段方法时间复杂度低、且易于实现, 在保持时间序列趋势特征的基础上, 得到的拟合误差更小...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号