共查询到17条相似文献,搜索用时 62 毫秒
1.
基于分段时间弯曲距离的时间序列挖掘 总被引:22,自引:1,他引:22
在时间序列库中的数据挖掘是个重要的课题,为了在挖掘的过程中比较序列的相似性,大量的研究都采用了欧氏距离度量或者其变形,但是欧氏距离及其变形对序列在时间轴上的偏移非常敏感.因此,采用了更鲁棒的动态时间弯曲距离,允许序列在时间轴上的弯曲,并且提出了一种新的序列分段方法,在此基础上定义了特征点分段时间弯曲距离.与经典时间弯曲距离相比,大大提高了效率,而且保证了近似的准确性. 相似文献
2.
基于分段线性动态时间弯曲的时间序列聚类算法研究 总被引:4,自引:0,他引:4
时间序列是一类重要的复杂类型数据,时间序列知识发现正成为知识发现的研究热点之一。欧几里德距离及其扩展作为相似测度被广泛应用于时间序列的比较中,但是这种距离测度时数据没有好的鲁棒性。动态时间弯曲技术是基于非线性动态编程的一种模式匹配算法,但是其计算复杂性相当高。本文提出了基于时间序列分段线性表示的动态时间弯曲算法,通过计算线性分段序列数据之间的最短弯曲路径来获得序列的匹配。对综合控制时间序列数据进行基于不同距离测度的聚类分析对比结果表明本文提出的算法有很高的精度和时振幅差异、嘈声和线性漂移有强的鲁棒性,大大降低计算复杂性,具有良好的应用价值。 相似文献
3.
4.
针对动态时间弯曲方法计算时间过长的问题,提出增量动态时间弯曲来度量较长时间序列之间的相似性。首先利用动态时间弯曲方法对历史时间序列数据进行相似性度量,得到相应的历史最优弯曲路径和路径中各元素的累积距离代价。其次,通过逆向弯曲度量方法完成当前序列数据 的相似性度量,结合历史数据信息找到与历史弯曲路径相交且度量时间序列距离为当前最小值的新路径,进而实现增量动态时间弯曲的相似性度量。该方法不仅具有良好的度量质量,还具有较高的时间效率。数值实验表明,对于大部分时间序列数据集,新方法的分类准确率和计算性能要优于经典动态时间弯曲。 相似文献
5.
针对常用方法无法准确度量多元时间序列相似程度的问题,提出一种基于多维分段和动态权重动态时间弯曲距离的多元时间序列相似性度量方法.首先对多元时间序列进行多维分段拟合,选取拟合段的斜率、均值和时间跨度作为每一段的特征,在对多元时间序列降维的同时也保留了变量之间的相关性;然后提出一种动态权重动态时间弯曲距离度量方法计算多元时间序列特征矩阵之间的距离,避免了直接使用动态时间弯曲距离造成的畸形匹配问题.最终实验结果也验证了该方法在多种类型的数据集上都能取得较高的度量精度,表明了该方法的有效性. 相似文献
6.
7.
一种基于DTW的新型故事时间序列相似性度量方法 总被引:1,自引:0,他引:1
现有时间序列相似性度量方法在进行股市序列相似性分析时,通常忽略成交量等其他重要因素对股价的影响,从而导致序列聚类、分类不精确。针对这一问题,本文提出了新的股市时间序列相似性度量方法。该方法在动态时间弯曲算法的基础上,通过引进时间衰竭因子,并结合成交量因素,给出了股市序列的最终度量公式。为了证明提出方法的可行性和有效性,本文实验部分通过选取家电等三个行业中的股票数据进行测试。实验结果表明,基于动态时间弯曲(Dynamic time warping,DTW)的新型股市时间序列相似性度量方法能够在保持股票序列形态特征的基础上,较好地解决股市技术分析中量价关系问题,从而更有效地应用于股市技术分析里关于模式发现等领域。 相似文献
8.
为了更好地体现时间序列的形态特征,并探索更适合于较长时间序列之间相似性度量的方法,在动态时间弯曲算法的基础上进行改进,提出了基于分层动态时间弯曲的序列相似性度量方法。对时间序列进行多层次分段,并从分段中均匀抽取相对应的层次分段子序列,然后将层次分段子序列抽象为三维空间的点(反映了分段子序列的均值、长度和趋势)进行相似性度量,最后综合各个层次的相似性度量作为结果。实验表明,在参数设置合理的情况下,此方法能获得较高的序列相似性度量准确度和效率。 相似文献
9.
目前的自回归滑动平均(ARMA)建模方法由于只利用了观测数据的高阶自协方差构建Yule-Walker方程,而没有利用观测数据的低阶自协方差信息,导致观测噪声方差的估计精度不高,并且在自回归(AR)阶次p小于或等于滑动平均(MA)阶次q时无法估计出观测噪声方差.为此,本文提出了一种单独估计观测噪声方差的新方法,即先将ARMA模型近似为一高阶AR模型,再构建从观测数据1阶自协方差开始的Yule-Walker方程.由于充分利用了观测数据的统计信息,有利于提高观测噪声方差的估计精度,为后续的AR和MA参数估计精度的提高奠定了基础,也解决了p小于或等于q时观测噪声方差无法估计的问题,仿真和实验结果验证了该方法的有效性. 相似文献
10.
非线性时间序列建模的混合自回归滑动平均模型 总被引:6,自引:2,他引:6
提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征. 相似文献
11.
12.
基于动态时间弯曲的时序数据聚类算法的研究 总被引:14,自引:0,他引:14
时间序列是一类重要的复杂类型数据,时间序列知识发现正成为知识发现的研究热点之一。欧几里的距离及其扩展作为相似测度被广泛应用于时间序列的比较中,但是这种距离测度对数据没有好的鲁棒性。动态时间弯曲技术是基于非线性动态编程的一种模式匹配算法。该文提出了基于动态时间弯曲技术的相似搜索算法,通过计算时序数据之间的最短弯曲路径来获得序列的匹配。对综合控制时序数据进行基于不同距离测度的聚类分析对比结果表明该文提出的算法有很高的精度和对振幅差异、噪声和线性漂移有强的鲁棒性,具有良好的应用价值。 相似文献
13.
为了进一步改善和提高基于模式的时间序列趋势相似性度量效果,在时间序列分段线性表示的基础上,依据分段子序列的均值及其线性拟合函数的导数符号,实现时间序列的分段模式化,以模式之间的异同性定义模式匹配距离,借鉴动态时间弯曲(Dynamic Time Warping,DTW)的动态规划原理,提出一种动态模式匹配方法(Dynamic Pattern Matching,DPM)。实验结果表明,该方法能够在不同压缩率条件下,准确度量等长时间序列的趋势相似性,而且时间消耗较低。时间序列不等长作为存在数据缺失的一种表现形式,该方法的度量效果与数据缺失比例之间的关系值得进一步的深入研究。 相似文献
14.
15.
16.
DTW(Dynamic Time Warping)算法被广泛应用于序列数据比对,以度量序列间距离,但算法较高的时间复杂度限制了其在长序列比对上的应用。提出基于自适应搜索窗口的序列相似比对算法(ADTW),算法利用分段聚集平均(Piecewise Aggregate Approximation,PAA)策略进行序列抽样得到低精度序列,然后计算低精度序列下的比对路径,并根据低精度距离矩阵上的梯度变化预测路径偏差,限制路径搜索窗口的拓展范围;随后算法逐步提高序列精度,并在搜索窗口内修正路径、计算新的搜索窗口,最终,实现DTW距离和相似比对路径的快速求解。对比FastDTW,ADTW算法在同等度量准确率下提高计算效率约20%,其时间复杂度为[O(n)]。 相似文献