首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
筋箍碎石桩复合地基是一种新型的软土地基处理方法,其沉降分析是地基处理加固设计的重要依据。因此,首先结合柔性基础下筋箍碎石桩复合地基的工程特点,通过深入研究筋箍碎石桩复合地基变形力学机理,将复合地基划分为碎石桩筋箍段、非筋箍段和下卧层三部分,建立出筋箍碎石桩复合地基沉降计算模型。然后,通过考虑筋箍碎石桩复合地基筋箍段桩土相对滑移和非筋箍段桩土径向变形即“鼓胀效应”特点,引入典型桩土单元分析模型,分别建立出碎石桩筋箍段和非筋箍段压缩变形计算方法,进而提出了柔性基础下筋箍碎石桩复合地基沉降分析新方法。最后,通过工程实例计算,并与实测值及现有方法计算结果进行对比分析,表明该方法更能反映工程实际情况,克服了现有方法分析结果偏于危险的缺陷。  相似文献   

2.
筋箍碎石桩复合地基桩–土界面摩擦特性对其荷载传递机理极为重要。首先通过室内大型直剪试验,研究了法向应力、软土含水率、碎石料相对密实度、筋材设置等因素对筋箍碎石桩桩–土界面摩擦特性的影响。在此基础上,采用离散元方法分析了筋材设置、筋材开孔率、筋材抗拉刚度等因素对界面摩擦特性的影响。室内试验及数值分析结果表明:桩土界面抗剪强度随法向应力、碎石料相对密实度、筋材开孔率、筋材抗拉刚度的增大而增大,随软土含水率的增加而降低;界面摩擦系数则随法向应力、软土含水率的增大而减小,随碎石料相对密实度、筋材开孔率的增大而提高,筋材抗拉刚度对其影响较小。  相似文献   

3.
常见的岩溶地质灾害对建筑物地基的影响主要为地基承载力不足、溶洞、土洞、岩溶塌陷等。对地基土可塑性分布不均、承载力不足、溶洞发育的不良地基,使用水泥碎石挤密桩与水泥压力灌浆的复合地基处理方法进行处理,并对处理后的水泥碎石桩挤密桩地基和水泥压力灌浆地基分别进行强度验算及标准贯入试验,以检测复合地基承载力。结果表明,该复合地基处理方法对此类岩溶地基具有较好的处理效果,对类似的岩溶地基工程具有较好的参考意义。  相似文献   

4.
强夯置换碎石桩复合地基承载力的试验研究   总被引:16,自引:5,他引:11  
 为了解决强夯时产生的超孔隙水压力问题, 提出了加固饱和粉土、粉质粘土地基的强夯碎石桩法。工程试验研究表明, 该法克服了一般强夯法对这类场地效果不理想的缺点, 加固后的复合地基不仅碎石桩本身桩体长、影响深、强度高, 而且, 桩间土的承载力得到很大的提高。复合地基比天然地基的承载力提高幅度在一倍以上。工程应用结果表明, 该方法是可行的。  相似文献   

5.
“柔性基础”刚性桩复合地基试验分析与变形计算   总被引:2,自引:0,他引:2       下载免费PDF全文
为了建立路堤下刚性桩复合地基变形计算模型,通过对14组刚性4桩复合地基的现场试验结果的分析,研究柔性基础条件下刚性桩复合地基的工作性状。试验研究表明采用一定强度或刚度的加筋垫层配合合适的桩帽设置,可改善柔性基础条件下刚性桩复合地基的工作性状,有效减小复合地基变形。复合地基承载力相同时,"柔性基础"沉降量为刚性基础的1.1~1.5倍。在一定荷载或承载力条件下,垫层中不设加筋材料时"柔性基础"短桩复合地基变形接近加筋垫层天然地基。垫层加筋有帽桩复合地基变形明显小于其他情况。对"柔性基础"短桩复合地基,设桩帽、垫层加筋,桩土应力比与不加筋相比增加了1~3倍;对刚性基础长短桩复合地基,碎石垫层中加筋与不加筋相比,桩土应力比范围得到延伸,其中长桩桩土压力比增大明显。提出了"柔性基础"条件下刚性桩复合地基承载力确定,以及考虑桩"上刺入"的刚性桩复合地基变形计算方法。该方法采用力平衡方程计算桩身中性点位置,将复合土层变形计算分为中性点平面  相似文献   

6.
路堤荷载下土工织物散体桩复合地基离心模型试验   总被引:1,自引:0,他引:1  
进行了2组不同筋材刚度土工织物散体桩复合地基路堤离心模型试验,和1组碎石桩复合地基路堤的对比试验,以研究其在真实应力条件下的性状及稳定性。研究结果表明:随着筋材刚度的增大,地基中的超孔隙水压力略有减小,桩顶和桩间土沉降明显减小,而桩顶和桩间土之间的差异沉降明显增大;桩土应力比随筋材刚度的增大先增长明显,而后趋于缓慢;当筋材刚度较低或上覆荷载很大时,土工织物散体桩可发生显著的弯曲变形而引起较大的沉降,碎石桩则在软土中容易发生鼓胀变形而引起很大的沉降,但两者均未在复合地基中形成剪切滑移的趋势。  相似文献   

7.
岩溶地区复合地基承载力的计算   总被引:1,自引:0,他引:1  
在广东省岩溶地区工程实践的基础上,总结出4个方面岩溶地质特征,分析其对岩溶地区复合地基工作机理及地基承载力的影响,给出了各主要参数的取值原则,提出了考虑岩溶发育程度的岩溶地区复合地基承载力计算方法,并用该方法对某实际工程进行不同桩型复合地基承载力的试算比选。借助岩溶地区现场3组预应力高强混凝土管桩(PHC桩)+高压旋喷桩复合地基大压板静载试验,通过布置土压力盒,测定并分析PHC桩桩顶、高压旋喷桩桩顶和桩间土体应力及其承载力特征值,计算桩土荷载分担比,分析静载试验中桩、土的受力特性。试验结果与设计计算得出的岩溶地区复合地基承载力特征值基本吻合,表明岩溶地区复合地基承载力计算方法安全可靠;在复合地基中,PHC桩桩土应力比为15~48,高压旋喷桩为1. 5~8,PHC桩桩顶应力集中显著; PHC桩承担了70%以上的荷载,高压旋喷桩和桩间土承担荷载总计不超过30%。  相似文献   

8.
筋箍碎石桩复合体抗剪性能对其稳定性分析至关重要。文章采用大型直剪仪,开展多组单根筋箍碎石桩及桩周土形成的复合体的直剪试验,深入分析了法向应力、桩周填土性质、筋材抗拉强度等因素对复合体抗剪性能的影响。试验结果表明:筋箍碎石桩复合体的抗剪强度大于普通碎石桩复合体,且筋材抗拉强度越大,加筋效果越明显,复合体抗剪强度的提高幅度越大;当桩周为砂土时,砂土相对密实度对复合体抗剪性能影响较小;当桩周为黏土时,黏土含水量越高,筋箍碎石桩复合体的抗剪性能越低。筋箍碎石桩复合体可能出现筋材胀裂破坏、筋材剪断破坏及桩身弯扭破坏等3种受剪破坏模式。此外,筋箍碎石桩复合体的抗剪强度可采用面积置换率法计算。  相似文献   

9.
为探讨碎石桩复合地基的承载力,从碎石桩的荷载传递和破坏性状出发,建立碎石桩复合地基的计算模型。基于半空间轴对称弹性理论及基本假定,考虑散体材料桩在荷载传递过程中的径向膨胀变形,根据桩土变形协调及桩土界面上径向应力平衡条件,得到桩土应力比的表达式。应用莫尔-库仑破坏准则,给出了碎石桩复合地基临塑荷载和临界荷载的计算公式。最后,与碎石桩复合地基极限承载力经典方法的计算结果进行对比,结果表明,计算所得的临界荷载十分接近。  相似文献   

10.
干振碎石桩的特性和设计计算研究   总被引:8,自引:1,他引:7       下载免费PDF全文
本文阐述干振碎石桩复合地基提高承载力的主要原因是桩间土的振密和挤土作用。通过试验还揭示了这种地基的应力传递规律、有效桩长、护桩的作用、复合地基承载力与置换率的关系等。根据干振碎石柱的特性建立了其承载力和沉降计算方法,该方法计算结果与实际相一致,可以在工程中采用。  相似文献   

11.
土工合成材料约束碎石桩作为一种新型软土地基处理技术在工程中广泛应用,其单桩承载力取决于土工合成材料抗拉强度和土的工程性质。通过对土工合成材料、碎石桩及地基土的相互作用机理进行分析,提出了考虑土工合成材料约束拉力与土体围压的桩身强度计算方法,进而推导出考虑上部荷载作用的,由桩身强度控制的单桩极限承载力计算方法,并采用MATLAB编写了计算程序,根据得出的单桩极限承载力计算了土工合成材料拉力沿深度的分布,结合一算例说明了计算所需要的参数及计算过程,成果可为土工合成材料碎石桩的设计提供计算依据。  相似文献   

12.
In very soft soils, the bearing capacity of stone columns may not improve significantly due to very low confinement of the surrounding soil. Therefore, they may be reinforced with geosynthetics by using vertical encasement or horizontal layers. Very limited studies exist on horizontally reinforced stone columns (HRSCs). In this research, some large body laboratory tests have been performed on horizontally reinforced stone columns with diameters of 60, 80, and 100?mm and groups of stone columns with 60?mm diameter. Results show that the bearing capacity of stone columns increases by using horizontally reinforcing layers. Also, they reduce lateral bulging of stone columns by their frictional and interlocking effects with stone column aggregates. Finally, numerical analyses were carried out to study main affecting parameters on the bearing capacity of HRSCs. Numerical analysis results show that the bearing capacity increases considerably with increasing the number of horizontal layers and decreasing space between layers.  相似文献   

13.
The bearing capacity and failure mechanism of encased stone columns are affected by many factors such as encasement length, relative density, strength and stiffness of the encasement material. In soft soils where surrounding soil pressure is low, especially in the top section, the stone columns may be close to a uniaxial compression state, where the uniaxial compression strength controls the bearing capacity of the stone columns. A series of large-scale triaxial tests on ordinary stone columns and uniaxial tests on geotextile encased stone columns have been performed. The stone columns were 300?mm in diameter and 600?mm in height. Samples of four different relative densities, and five types of geotextiles were used in the tests to study the effect of initial void ratio and encasing materials on the uniaxial compression behavior of the stone columns. The results show the uniaxial compressive strength of the encased stone columns is not affected by the initial void ratio but mainly by the tensile strength of the encasing geotextiles. The stress strain curves of the encased stone columns under uniaxial loading condition are nearly liner before failure, which is similar to the tensile behavior of the geotextiles.  相似文献   

14.
This paper presents the results of an experimental research on the behavior of geosynthetic encased stone columns and ordinary stone columns embedded in soft clay under dynamic base shaking. For this purpose, a novel laminar box is designed and developed to run a total of eight sets of 1-G shaking table tests on four different model soil profiles: Soft clay bed, ordinary stone column installed clay bed, and clay beds with geosynthetic encased columns with two different reinforcement stiffnesses. The geosynthetic encased columns are heavily instrumented with strain rosettes to quantify the reinforcement strains developing under the action of dynamic loads. The responses of the columns are studied through the deformation modes of the encased columns and the magnitude and distribution of reinforcement strains under dynamic loading. The response of the granular inclusion enhanced soft subsoil and embankment soil and the identification of the dynamic soil properties of the entire soil body are also discussed in this article. Finally, to determine the effect of dynamic loading on the vertical load carrying capacity, stress-controlled column load tests are undertaken both on seismically loaded and undisturbed columns.  相似文献   

15.
将饱和砂土视为土-水两相介质,以Biot动力固结方程为基础,编制完全耦合的三维排水有效应力动力反应分析程序,通过模型试验验证程序的正确性。利用该程序对碎石桩复合地基进行地震响应分析,探讨不同土层构成和不同附加压重等因素对抗液化性能的影响。结果表明:经碎石桩加固后,桩间土中的超孔压比比未加固前减小;随时间的延长,出现了明显的超孔压消散现象,距离碎石桩越近,超孔压消散现象越明显;附加压重对地基中超孔隙水压力的增长有明显地抑制作用,在进行工程设计时应该考虑附加压重的有利影响,适当增加桩间距。  相似文献   

16.
针对加筋碎石桩复合地基中桩体性能,通过有限元数值模拟与模型试验对比分析,验证了数值模型的可靠性,进而变换加筋长度,研究分析了复合基础下端承加筋单桩与群桩的极限承载能力和破坏模式。研究结果表明:筋材强度较低时,加筋长度不会对桩体破坏模式产生影响,对极限承载能力提高有限;随着筋材强度不断提高,碎石桩在加筋体以下区域发生剪切破坏,并且随着加筋长度的增加向更深土层发展,基础的极限承载能力线性增长。加筋长度对群桩复合地基不同位置处桩体的破坏模式影响不同。相较于边桩,中心桩在桩身较深位置处发生剪切破坏,筋材需达到较深的长度才发挥约束效果。  相似文献   

17.
通过高轴压比下8个加芯混凝土框架柱和1个普通混凝土框架柱低周往复加载的模型试验,阐述了主要试验现象及破坏形态,对各试件的P-Δ滞回曲线、位移延性系数、极限位移转角、屈服荷载和极限荷载等试验结果进行了研究,分析了加芯混凝土框架柱延性和承载力的影响因素。结果表明:通过对芯柱进行合理设置,加芯混凝土框架柱具有良好的滞回延性和较高的抗震承载力,可明显改善普通混凝土框架柱在高轴压比下的抗震性能,弹塑性变形能力能够满足抗震要求;芯柱的纵筋配筋率、截面面积和体积配箍率是影响加芯混凝土框架柱延性和承载力的主要因素。结合以往的研究成果,本文提出了加芯混凝土框架柱轴压比限值的建议值、正截面承载力计算公式以及相关设计建议。  相似文献   

18.
通过对8根长细比为20~25的钢筋混凝土细长柱极限承载能力试验,研究了在大长细比区域柱子的长细比、配筋率、混凝土强度等对钢筋混凝土细长柱的极限承载能力及破坏形态的影响。试验结果表明,在大长细比区域,长细比的增加对构件的极限承载力降低效应更加显著;当长细比达到25后,宜采用模型柱法进行设计,偏心距增大系数法设计所增加的纵筋配筋率对提高构件极限承载力的作用不大;但混凝土的强度等级仍然对试件的承载力及破坏形态有较大影响,当混凝土强度接近或大于C60时,即使是长细比为25的构件也可能发生失稳破坏。  相似文献   

19.
The formula for calculating the ultimate bearing capacity of horizontal-vertical reinforced soil is investigated based on the failure mode and the mechanism of sand beds reinforced with horizontal-vertical reinforcement. Two components of soils and reinforcement are calculated separately. The ultimate bearing capacity of a shallow, concentrically loaded strip footing on homogeneous soil is commonly determined using the Terzaghi superposition method. The contribution of horizontal-vertical reinforcement is calculated based on the bearing resistance of the soil against the transverse members. A vertical inclusion is treated as a retaining wall, the confinement being calculated using Rankine's earth pressure theory. An analytical solution is presented including the traditional factors of soil, unit soil weight, footing width, number of horizontal-vertical reinforcement layers, and reinforcement geometry. The results were validated against experimental results and the mean error of the theoretical model was about 10%, with a maximum error of about 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号