首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 419 毫秒
1.
脆性岩石卸围压试验与岩爆机理研究   总被引:4,自引:0,他引:4  
岩爆是高地应力区地下工程开挖卸荷产生的动力现象。按照地下工程开挖卸荷特点,开展了脆性花岗岩常规三轴、不同卸载速率条件下峰前、峰后三轴卸围压试验,研究了岩石破坏的全过程并进行了声发射特征分析,探讨了岩爆岩石的变形破坏特征和岩爆形成力学机制。试验结果表明:无论是峰前还是峰后卸围压,高地应力下花岗岩都表现脆性破坏特征,峰前卸围压时岩样表现出的脆性比峰后卸围压更为强烈;卸载速率越快,岩石脆性破坏越强,发生岩爆的可能性越大。试验研究成果对地下工程岩爆发生的机理研究和预测提供了试验依据。  相似文献   

2.
山岭隧道工程高地应力岩爆现象的发生受多种因素的影响,其中岩石卸围压过程中的破坏特性是其重要的判别标志之一。本文结合二广高速公路茅田界隧道隧址变质砂岩常规三轴试验不同围压条件下峰前卸围压试验,开展岩石破坏的全过程实验研究,并结合破裂过程的声发射特征探讨了岩石的变形破坏特征,初步分析了卸载破坏诱发岩爆机理基本特征。研究结果表明:随着围压不断的增加,变质砂岩变形特性表现出低围压下的脆性向高围压下塑性的转换,说明围压的增加抑制了岩样的破坏,提高了岩样的承载能力。在相同围压条件下,较快的卸载速率使岩样破坏时释放的能量更小,说明岩样破坏前所能储存的极限储存能更少,这样岩爆就会更容易发生。此外,变质砂岩破坏初期是以张性破坏为主,峰前卸围压,高地应力下变质砂岩表现出张剪性破坏特征,且岩样表现出的脆性随围压强度增大而减小。  相似文献   

3.
应力路径不同,岩石变形和破坏过程中伴随的声发射特征也不同,通过不同路径大理岩加、卸荷试验,结合分形维数原理,探讨声发射破坏前兆随应力路径的变化规律。试验结果表明:1岩样破坏处的声发射计数率和破坏前的累计计数率增长率由大变小的应力路径为加轴压卸围压、恒轴压卸围压、单轴、常规三轴路径。2常规三轴路径下岩样临近破坏时,声发射事件计数率存在明显的"低声发射期",围压越大,声发射前兆"低声发射期"越明显;同时累计振铃计数率增长速率降低的拐点出现后很短时间,岩样也会发生破坏。3低围压下恒轴压、卸围压路径岩样破坏时累计振铃计数率的增长速率近似为切线。加轴压、卸围压岩样破坏前一段相近计数率后存在声发射计数率的"平静期",围压增加,"平静期"持续时间增加,岩样破坏产生的计数率越高。4在低围压应力环境下应力比0.8、高围压应力环境下时间比0.4时声发射分维数降低的特征可以作为岩样的破坏前兆分析。  相似文献   

4.
采用MTS815岩石力学试验机和声发射监测系统,研究我国高放废物地质处置库北山预选区深部花岗岩在三轴循环加、卸载条件下的损伤和扩容特性。基于试验结果,分析岩石全应力–应变曲线与累计声发射撞击数和事件数的时空分布关系,进而揭示其破裂演化机制。通过构建岩石在循环加、卸载过程中的塑性应变轨迹,获得峰后剪胀角随塑性剪切应变的变化规律,探讨岩石扩容对塑性剪切应变和围压的依赖性。研究结果表明:(1)声发射事件增量最大值出现在应变软化阶段,在该阶段的反复加载是加剧其内部损伤和裂隙宏观贯通的主导因素,残余变形阶段的裂隙行为主要表现为宏观断裂面间的摩擦、滑移,岩石扩容率趋于恒定;(2)卸载过程对于裂隙发展的影响远小于加载过程,由于裂隙的发展状态不同,在裂隙损伤应力(σcd)之前和之后卸载导致的声发射特征具有显著的差异性;(3)峰后剪胀角随塑性剪切应变的增加而减小,并随围压增加其衰减梯度不断减小,采用指数函数建立围压和塑性剪切应变为影响因素的剪胀角模型,可合理描述北山花岗岩的扩容特性。  相似文献   

5.
砂岩卸围压变形过程中渗透特性与声发射试验研究   总被引:3,自引:1,他引:2  
 利用岩石伺服试验系统,对江西红砂岩岩样进行气体渗透三轴试验及声发射监测,研究在常规加载、峰前卸围压和峰后卸围压3种应力路径下,岩样变形破坏过程中的渗透规律和声发射特征。试验结果表明:(1) 随着有效围压的增大,岩石岩样的应力峰值逐渐增大,岩样的应力峰值对有效围压很敏感。(2) 常规加载时,渗透率在岩石屈服前呈现略微下降的趋势,屈服后迅速增长,峰后应变软化阶段有小幅回落;峰前和峰后卸围压时,在卸载之前渗透规律与常规加载时相同,卸载后渗透率均呈急剧增长的趋势,增幅也较大,其中峰前卸围压后渗透率增幅最大。(3) 在相同加载方式下,围压的增大不影响渗透率曲线的发展趋势,只影响渗透率在各阶段量值的大小。(4) 常规加载时,岩石声发射活动在屈服前比较平静,屈服后声发射活动非常活跃,峰后应变软化阶段声发射活动再次趋于平静;峰前卸围压不久后,声发射活动异常活跃、密集,能量数相对值较大并有明显峰值;峰后卸围压过程与常规加载过程中声发射规律相似。(5) 岩样的破坏过程中,随围压增大,脆性减弱、延性增强,在同一围压水平下,峰前卸围压破碎程度最高,脆性最强。(6) 岩石扩容点与渗透率最小值所对应的轴向应变值十分接近,体应变和渗透率随轴向应变的变化趋势对应较好,声发射活动的密集阶段均发生在体积膨胀之后,渗透率、声发射、应力及(体)应变之间存在一定对应关系。  相似文献   

6.
采用极点对称模态分解方法对大理岩卸围压破坏的声发射数据进行去噪处理,分析大理岩卸围压变形破坏全过程的声发射变化特征。加载初期声发射振铃较小且增长缓慢,扩容点后声发射振铃计数率迅速增加。声发射时频变化呈现波动特征,峰值强度前频率出现突增,临近峰值强度时频率明显降低。利用关联维数方法计算大理岩卸围压破坏过程的声发射分形维数,声发射分形维数呈现阶段性变化,先增大后减小,在应力达到峰值强度的80%附近出现陡增,破坏时分形维数又出现大幅降低。频率变化特征与分形维的变化规律具有对应关系,声发射信号频率突然上升且分形维数陡增可认为是岩石破坏前兆。  相似文献   

7.
为分析端部摩擦对岩石力学参数的影响,采用RMT–150B岩石力学试验系统对砂岩试样进行不同端部摩擦因子和围压卸载速率下的三轴卸围压试验。结果表明:在相同端部摩擦因子和初始围压下,围压卸载速率越大,试样破坏围压越低,试样破坏差应力越大;在相同围压卸载速率和初始围压下,端部摩擦因子越大,试样破坏围压越低,试样破坏差应力也越大;在相同围压卸载速率下,试样内摩擦角φ和黏聚力c值整体上随端部摩擦因子增加近似直线增加;在相同端部摩擦因子下,试样内摩擦角φ和黏聚力c值整体上随围压卸载速率增大而增大,但增加速率逐渐降低。提出包含端部摩擦因子和围压卸载速率的end-friction(E-F)卸载强度准则,通过采用该准则对试样峰值强度和破坏围压的关系进行拟合分析,认为该准则能够较好地描述三轴卸围压破坏试样强度。若已知端部摩擦因子K值,可得到不同围压卸载速率v下岩石E-F卸载破坏强度包络线,进而获得不同围压卸载速率下岩石材料强度参数。  相似文献   

8.
开展大理岩岩样常规三轴加荷破坏试验研究,分析大理岩变形破坏过程各阶段声发射及其频率、b值变化特征,探索不同围压下岩石破坏前兆信息。结合极点对称模态分解方法(ESMD方法)对声发射数据进行去噪处理后的试验结果表明:三轴压缩破坏岩样声发射水平在压密阶段和弹性阶段较小,塑性阶段逐渐活跃,扩容应力后声发射水平显著提高,在峰前塑性阶段存在声发射平静期。岩样变形破坏过程中的声发射频率与b值整体表现为上下波动态势,加载初期声发射频率与b值波动较大,并保持在较高水平,塑性变形阶段声发射频率与b值变化幅度减小。与声发射平静期相对应,塑性阶段存在声发射频率与b值变化相对稳定阶段。低围压下岩石破坏前声发射频率与b值均出现骤降特征,岩石发生脆性断裂,高围压下岩石破坏前声发射频率与b值变化相对平稳,岩石发生渐进式破坏。  相似文献   

9.
锦屏大理岩加、卸载应力路径下力学性质试验研究   总被引:4,自引:7,他引:4  
 地下岩体开挖卸荷应力路径不同于加载应力路径,由此引起的岩体强度、变形特征和破坏机制也不尽相同。针对锦屏二级水电站引水隧洞群围岩赋存于高地应力环境的特点,对其中3# 引水隧洞大理岩开展单轴加、卸载以及三轴压缩和高应力条件下的峰前、峰后卸围压等4种不同应力路径力学试验,得到了的应力–应变全过程曲线、变形破坏特征和主要力学参数的变化规律。试验研究结果表明:(1) 建立在岩样单轴逐级等量加、卸载应力路径下的回滞环面积递减,尤以屈服阶段的卸载对应变影响最大;(2) 不同围压下岩样三轴压缩全过程试验结果表明,当围压达到40 MPa时,应变软化特性转化为理想塑性,可以认为该值为锦屏大理岩脆-延转化点;(3) 对比以上不同应力路径下的强度准则方程以及峰前、峰后黏聚力和内摩擦角,相同初始应力条件下,岩石卸载破坏所需应力变化量比三轴压缩破坏情况下对应的应力变化量小,说明岩石卸载更容易导致破坏;(4) 在变形破坏机制方面,由于峰后比峰前卸围压塑性变形大,岩样塑性变形已吸收较多的弹性变形能,其脆性特性受到抑制,因而不像峰前卸围压破坏具有突发性,岩样由张性破坏过渡到张剪性破坏;(5) 根据大理岩岩样加、卸载破坏断口SEM扫描结果,从细观角度验证了脆性岩石在不同路径下微观剪断裂破坏机制。总之,以上研究结果揭示了锦屏大理岩加、卸载应力路径下力学特性差异,对解决工程实际问题具有重要的参考价值。  相似文献   

10.
不同应力路径下煤样变形破坏过程声发射特征的试验研究   总被引:10,自引:4,他引:6  
 利用RMT–150B岩石力学试验机对义马耿村具有冲击倾向性煤样进行常规单轴、三轴和三轴卸围压试验,研究在不同应力路径下煤样变形破坏过程中的声发射特征。试验结果表明,煤样在不同应力路径下加载变形破坏过程中产生的声发射特征有所差异。常规单轴压缩过程中各个阶段均有不同程度的声发射事件,与三轴筒内单轴压缩相比,声发射累计计数和能量明显偏大,破坏瞬时的声发射计数和能量大致相当;常规三轴压缩试验时,在围压作用下煤样屈服前声发射事件较少,进入屈服阶段声发射事件逐渐趋于活跃,计数和能量大幅度增大,标志煤样破坏前兆,破坏瞬时声发射计数和能量达到最大值;三轴卸围压试验时,在卸围压前煤样处于弹性阶段声发射事件较少,随围压逐渐降低,由正应力提供的摩擦力不断减小,煤样内部材料强度相对较低逐步屈服破坏形成微裂纹。屈服前期产生少量声发射事件,屈服后期声发射事件逐渐趋于活跃,计数和能量大幅度增大,标志煤样卸围压破坏前兆,破坏瞬间计数和能量同时达到最大值,与常规三轴压缩相比,声发射计数更大,能量则更高,表明三轴卸围压煤样破坏时更加强烈;常规单轴压缩煤样破坏产生的声发射累计计数和累计能量明显偏大,三轴筒内单轴、常规三轴压缩以及三轴卸围压试验时,声发射累计计数和能量大致相同,没有明显差异。  相似文献   

11.
三轴循环加卸载过程中盐岩声发射演化特征分析   总被引:3,自引:0,他引:3  
为探究盐岩储气库运行过程中的声发射特征,对取自平顶山岩穴一号钻孔的盐岩进行不同围压作用下的三轴循环加卸载试验及全过程声发射监测试验。试验研究表明:围压施加过程中,声发射信号主要出现在围压施加前期,声发射振铃计数率和能量率的最大值出现在围压压力5~10 MPa的时间区段,且振铃计数率和能量率达到最大以后,声发射信号随着围压的增大逐渐减弱;围压越低,试验加载初期产生的声发射信号越强,整个试验过程中累积振铃计数越多,能量率和能量越高;围压会使试验过程中声发射信号后移,且围压越大,后移现象越明显;围压的增大会使得盐岩加载过程中的平静期缩短和后移,直至平静期的消失;考虑三轴加卸载过程,加载段有明显的声发射信号,卸载段鲜有声发射信号,偏应力峰值前有明显的Kaiser现象,峰值后伴随大量的声发射信号,但Kaiser现象消失。  相似文献   

12.
为了研究卸荷速率和孔隙水压力对砂岩卸荷力学特性的影响,设计进行了不同卸荷速率(0.005,0.02,0.05,0.1 MPa/s)和不同孔隙水压力(0,0.3,0.6,0.9,1.2 MPa)下的三轴卸荷试验。研究结果表明:(1)在加载阶段,随着孔隙水压力的增大,岩样的应力–应变曲线斜率逐渐降低;(2)在围压卸载阶段,卸荷速率越大,卸载阶段的应变围压柔量越小,岩样破坏时的围压越小,岩样强度相对较高,但破碎程度更严重,而且,在相同的卸荷速率情况下,孔隙水压力越大,岩样侧向扩容现象越明显,岩样越容易破坏;(3)在围压卸载阶段,岩样的变形模量出现了先缓后陡的劣化趋势,而且,卸荷速率越小、孔隙水压力越大,变形模量劣化幅度越大;(4)卸载过程中,卸荷速率越大,岩样脆性破坏特征越明显;孔隙水压力越大,岩样破坏时的近轴向的张性裂纹越多和追踪次生裂纹越多,孔隙水压力在岩样内部裂纹、裂隙尖端的应力集中是导致岩石变形破坏的主要原因。  相似文献   

13.
不同卸围压速率下深埋大理岩卸荷力学特性试验研究   总被引:11,自引:6,他引:5  
为了更准确认识卸荷速率对岩石力学性质的影响规律,进行不同卸荷速率的三轴卸围压试验,试验采用新的试验路径和加载方式,减少试验过程对试验结果的不利影响。针对锦屏二级水电站深埋大理岩,通过新提出的描述变量(应变围压柔量)重点分析卸围压速率在0.01~1.0MPa/s范围内围压卸荷对变形规律的影响,研究扩容过程的演化规律和强度特征的差异。研究结果表明,大理岩的轴向变形和扩容过程受卸围压速率的影响较为显著,影响规律主要由初始围压水平控制。卸围压试验扩容过程与常规三轴压缩试验峰前阶段的扩容演化规律存在显著差异。不同卸围压速率破坏时获得的极限承载强度均高于加载速率为0.5MPa/s时常规三轴压缩的峰值强度。随着卸围压速率的增大,极限承载强度不断提高,达到1.0MPa/s速率时极限承载强度可提高10%~15%。  相似文献   

14.
利用改进的霍普金森压杆对不同围压、不同应变率下的岩样进行了试验研究,分析了其在中高应变率下的冲击响应特征与破坏模式。基于试验结果发现在围压一定情况下,岩石的动态抗压强度和峰值应变随应变率的增大而增大,其中抗压强度随应变率呈对数增长;弹性模量对围压和应变率不敏感,且应变率越大岩石破碎现象越严重。其次,在应变率相近情况下,花岗岩的动态抗压强度随围压呈增大趋势,其破坏模式由低围压下的轴向劈裂转向高围压下的压剪破坏;高围压下花岗岩应力–应变曲线出现屈服平台,具有明显的脆—延性转化特征。最后,检验了莫尔–库仑准则和霍克–布朗准则的适用性,指出此花岗岩更符合莫尔–库仑准则,其动态强度增大主要由黏聚力的应变率效应引起。  相似文献   

15.
 为了研究复杂应力环境下岩体工程开挖的影响,设计内压加卸载试验装置,利用内径20 mm、外径49.84 mm的厚壁圆筒石灰岩试样,在RMT–150C岩石力学试验系统进行不同内压条件下的加卸载试验,重点分析了孔内卸压条件下试样的破坏形式产生机制。结果表明:(1) 固定孔压加载时,由于试样孔道内外存在应力差,不能进入延性变形阶段,高围压时有孔压试样的强度明显高于无孔压试样的强度;(2) 孔压卸载对试样造成的损伤较大,卸载孔压后重新加载的试样,其强度低于常规三轴压缩时的孔道试样;卸载破坏时试样内外压差越大,其强度越小,表明围岩发生破坏的根源在于巷道开挖卸载后引起应力差的增加;(3) 固定孔压时,试样多呈现单一的剪切面滑移破坏,而卸载孔压时试样破坏形式都为张拉破坏或者压拉组合破坏,应力路径对孔道试样破坏形式影响较大。研究结果为揭示深埋巷道围岩破坏失稳现象的产生机制提供参考。  相似文献   

16.
利用岩石伺服试验系统,对经历25℃~900℃作用后的花岗岩试样进行三轴卸围压试验,研究高温后花岗岩在卸荷路径下的变形特性、参数特征及破坏形态。结果表明:经历300℃后的岩样围压卸荷量最少,最容易发生破坏。基于应变围压增量比,定量揭示了卸荷破坏是由强烈的径向变形和体积扩容所致。随着温度上升,各应变围压增量比均先增大后减小,在300℃时达到最大。卸荷过程中岩样的变形模量逐渐减小,25℃~900℃之间,减小33.20%~59.11%,且温度越高减小越多,与体积应变均呈二次多项式相关;泊松比逐渐增大,25℃~900℃之间,增大164.96%~274.03%,且温度越高增加越多,与体积应变均呈线性相关。高温后的岩样在单轴压缩下均呈轴向劈裂破坏,并存在多个贯通裂纹;在三轴压缩下为宏观单一的贯通剪切破坏形态;三轴卸围压下破坏形态则比较复杂,常温时为高角度的局部剪切破坏,随温度升高,岩样变为贯通剪切破坏,到900℃时又变为局部剪切破坏。  相似文献   

17.
围压对砂岩动态冲击力学性能的影响   总被引:10,自引:3,他引:7  
 利用带围压装置的霍普金森压杆设备对砂岩在不同围压等级、不同应变率下的动态力学性能进行试验研究,分析砂岩单轴动态抗压强度和比能量吸收值的应变率效应,围压状态下砂岩在冲击荷载循环作用下的力学特性以及累积比能量吸收值与入射能量、围压等参量之间的关系。研究结果表明,砂岩的动态杨氏模量与静态杨氏模量相比明显增加,两者比值达3.21~3.81;而当应变率为50~100 s-1时,动态杨氏模量随应变率有所增加,但变化不大。砂岩单轴动态压缩试验的比能量吸收值与应变率 呈线性关系,而单轴动态抗压强度增长因子 (即动态抗压强度)与 成线性关系。在围压状态下,砂岩具有明显的脆性–延性转化特征,其应力–应变曲线出现明显的屈服平台,呈近似的弹塑性特征。围压的加载作用对阻止试件产生剪切失稳的作用相当明显。随着冲击荷载循环作用次数的增加,试件的杨氏模量变小,屈服应力降低,屈服应变增加。砂岩的破坏形态随围压大小不同而发生变化,砂岩从轴向拉伸破坏形态向压剪破坏形态转变的临界围压值为10 MPa。在能量相同的入射波作用下,砂岩试件在低围压时比在高围压时的比能量吸收值大,且砂岩的比能量吸收值、入射波能量和围压三者具有良好的规律性,并得到比能量吸收值随入射波能量和围压变化的关系式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号