首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冯东  王博  刘琦  陈朔  陈刚  胡天丁 《复合材料学报》2021,38(5):1371-1386
3D打印又称增材制造技术,是基于材料、机械控制、计算机软件等多学科交叉的先进制造技术,可得到传统加工不能制备的形状复杂制件.熔融沉积成型(FDM)是目前最通用的3D打印技术之一,具有设备简单、成本低、操作便捷等特点,广泛应用于航空航天、医疗、汽车工业等领域.本文介绍了国内外3D打印技术的整体布局、发展和规划,总结了常见...  相似文献   

2.
近年来金属增材制造技术的快速发展,使其在航空航天、医疗行业、汽车制造等领域得到了大量应用.本文简要介绍了金属增材制造的典型工艺、金属粉末和金属丝材的制备方法以及基于文献统计的方法分析金属增材制造目前的研究热点和发展趋势.结果 表明,金属增材制造技术在仿真设计、制造工艺、过程监控、质量评估、后续处理等领域还没有形成完善的...  相似文献   

3.
Additive manufacturing and 3D printing tech-nology have been developing rapidly in the last 30 years, and indicate great potential for future development. The promising future of this technology makes its impact on traditional industry unpredictable. 3D printing will propel the revolution of fabrication modes forward, and bring in a new era for customized fabrication by realizing the five "any"s: use of almost any material to fabricate any part, in any quantity and any location, for any industrial field. Innovations in material, design, and fabrication processes will be inspired by the merging of 3D-printing technology and processes with traditional manufacturing processes. Finally, 3D printing will become as valuable for manufacturing industries as equivalent and subtractive manufacturing processes.  相似文献   

4.
当代社会对产品的功能及性能的要求越来越高,苛刻的使役条件要求零件具有功能耦合、多环境适应的能力。金属多材料增材制造技术相比传统制造技术具备更大的优势,在航空航天、汽车工业、电力行业、生物医学等领域中均具有广阔的应用前景。研究了电子束增材制造、电弧增材制造和冷喷涂增材制造在金属多材料增材制造中的应用现状以及最新发展。重点研究了金属多材料增材制造技术在宏观成形精度、微观组织缺陷和粒子界面结合中存在的关键问题。最后,指出了金属多材料增材制造技术在材料种类、基础理论、零件复杂度、质量控制等方面的发展趋势。将为金属多材料应用于增材制造技术提供新的思路和借鉴价值。  相似文献   

5.
Additive manufacturing technology has been evolving for several years. New material options, better processing speeds and greater autonomy are some of the characteristics of this technology that are still under research. However, in its current state, many commercially available 3D printers are competing with traditional manufacturing techniques in the fabrication of end-use products. In this paper, different additive manufacturing technologies are compared with injection moulding in a real-world case study. The comparison is conducted in terms of lead time and total production cost. From the case under study, it becomes obvious that none of the additive manufacturing technologies examined is yet able to practically replace injection moulding for medium- and high production volumes. However, when considering low-volume production, both rapid tooling and additive manufacturing may offer an alternative that could result into shorter lead times and decreased total production costs. In addition, the introduction of Additive Manufacturing in a producer’s production portfolio can increase flexibility, reduce warehousing costs and assist the company towards the adoption of a mass customisation business strategy.  相似文献   

6.
电弧增材制造因其独特的无模壳快速近净成形特点而备受关注,有望成为突破铝合金材料研发与工业应用瓶颈的先进制造技术。电弧增材技术在传统电弧焊接的基础上发展而来,二者均以高能电弧为热源、以金属丝材为原材料进行成形。本文综合分析了电弧增材制造工艺与设备研发现状、凝固与固态相变特性、显微组织特点、冶金缺陷概况以及力学性能特点,论述了热丝及多丝增材制造技术前景和电弧增材制造独特的成形方式与相变显微组织特征。针对电弧增材制造铝合金制造精度及稳定性较差、气孔及热裂缺陷严重、材料力学性能优势不突出的问题,提出了电弧增材制造专用设备开发、熔丝累加快速凝固冶金缺陷控制专用方法研发、专用材料成分及显微组织设计、专用热处理工艺制定等发展方向,为加快电弧增材制造铝合金高端化、定制化、专属化发展提供重要参考。  相似文献   

7.
ABSTRACT

The implementation of additive manufacturing (AM) as an industrial production process poses extraordinary challenges to companies due to the far-reaching differences to conventional processes. In addition, there are hardly any standards and guidelines or methodical process models for the relatively new technologies that enable the reproducible and target-oriented use of AM. In order to solve this problem, five industrial companies together with the Paderborn University are researching as part of the ‘OptiAMix’ research project funded by the Federal Ministry of Education and Research (BMBF). This paper focuses on the development of an ideal process chain. Reference processes of the OptiAMix partners were analysed, norms and standards from conventional production were adapted and implemented and procedure models developed OptiAMix were integrated. The resulting AM Product Development Process was then applied and validated with the aid of a previously developed integration methodology using an example component from the automotive industry.  相似文献   

8.
Flexible electronics have witnessed exciting progress in academia over the past decade, but most of the research outcomes have yet to be translated into products or gain much market share. For mass production and commercialization, industrial adoption of newly developed functional materials and fabrication techniques is a prerequisite. However, due to the disparate features of academic laboratories and industrial plants, translating materials and manufacturing technologies from labs to fabs is notoriously difficult. Therefore, herein, key challenges in the materials manufacturing of flexible electronics are identified and discussed for its lab-to-fab translation, along the four stages in product manufacturing: design, materials supply, processing, and integration. Perspectives on industry-oriented strategies to overcome some of these obstacles are also proposed. Priorities for action are outlined, including standardization, iteration between basic and applied research, and adoption of smart manufacturing. With concerted efforts from academia and industry, flexible electronics will bring a bigger impact to society as promised.  相似文献   

9.
10.
The ability to adapt to changes in products, processes and technologies is a key competitive factor. Changeable manufacturing paradigms have emerged to address this need, but the industrial implementation remains challenging. In this paper, a participatory design methodology for changeable manufacturing systems is proposed, including requirements specification, selection of appropriate manufacturing paradigm and suitable physical and logical enablers. The methodology supports companies in determining the potential for and mechanisms of transitioning towards changeable manufacturing systems, based on knowledge of products, production, technologies and facilities. The developed methodology is applicable to both new and existing manufacturing systems. It is demonstrated in two industrial cases which highlight its applicability and differences in the appropriate recommended manufacturing systems transition towards changeability as a result of differences in manufacturing characteristics, change requirements and enablers.  相似文献   

11.
《工程(英文)》2017,3(5):648-652
The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s), continues to line(s) and layer(s), and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of “subtracting material” to the new method of “adding material” in order to manufacture a part. AD is not the same as designing for AM. A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.  相似文献   

12.
Customised implants manufacture has always presented difficulties which result in high cost and complex fabrication, mainly due to patients' anatomical differences. The solution has been to produce prostheses with different sizes and use the one that best suits each patient. Additive manufacturing (AM) as a technology from engineering has been providing several advancements in the medical field, particularly as far as fabrication of implants is concerned. The use of additive manufacturing in medicine has added, in an era of development of so many new technologies, the possibility of performing the surgical planning and simulation by using a three-dimensional (3D) physical model, very faithful to the patient's anatomy. AM is a technology that enables the production of models and implants directly from the 3D virtual model (obtained by a Computer-Aided Design (CAD) system, computed tomography or magnetic resonance) facilitating surgical procedures and reducing risks. Furthermore, additive manufacturing has been used to produce implants especially designed for a particular patient, with sizes, shapes and mechanical properties optimised, for areas of medicine such as craniomaxillofacial surgery. This work presents how AM technologies were applied to design and fabricate a biomodel and customised implant for the surgical reconstruction of a large cranial defect. A series of computed tomography data was obtained and software was used to extract the cranial geometry. The protocol presented was used for creation of an anatomic biomodel of the bone defect for the surgical planning and, finally, the design and manufacture of the patient-specific implant.  相似文献   

13.
吴凡  林博超  权银洙  陈玮  杨洋 《真空》2022,(1):79-85
电子束增材制造是增材制造技术的主要方向之一,它在真空中进行,具有能量利用率高、零件残余应力低等优势,在航空航天、医疗领域获得较为广泛的应用.介绍了两种电子束增材制造方法——电子束选区熔化和电子束熔丝沉积,总结了设备、电子枪、工艺、材料组织调控等方面的研究与应用进展,并对电子束增材制造技术的发展进行了展望.  相似文献   

14.
《工程(英文)》2017,3(5):616-630
Our next generation of industry—Industry 4.0—holds the promise of increased flexibility in manufacturing, along with mass customization, better quality, and improved productivity. It thus enables companies to cope with the challenges of producing increasingly individualized products with a short lead-time to market and higher quality. Intelligent manufacturing plays an important role in Industry 4.0. Typical resources are converted into intelligent objects so that they are able to sense, act, and behave within a smart environment. In order to fully understand intelligent manufacturing in the context of Industry 4.0, this paper provides a comprehensive review of associated topics such as intelligent manufacturing, Internet of Things (IoT)-enabled manufacturing, and cloud manufacturing. Similarities and differences in these topics are highlighted based on our analysis. We also review key technologies such as the IoT, cyber-physical systems (CPSs), cloud computing, big data analytics (BDA), and information and communications technology (ICT) that are used to enable intelligent manufacturing. Next, we describe worldwide movements in intelligent manufacturing, including governmental strategic plans from different countries and strategic plans from major international companies in the European Union, United States, Japan, and China. Finally, we present current challenges and future research directions. The concepts discussed in this paper will spark new ideas in the effort to realize the much-anticipated Fourth Industrial Revolution.  相似文献   

15.
Several recent research efforts have focused on use of computer-aided additive fabrication technologies, commonly referred to as additive manufacturing, rapid prototyping, solid freeform fabrication, or three-dimensional printing technologies, to create structures for tissue engineering. For example, scaffolds for tissue engineering may be processed using rapid prototyping technologies, which serve as matrices for cell ingrowth, vascularization, as well as transport of nutrients and waste. Stereolithography is a photopolymerization-based rapid prototyping technology that involves computer-driven and spatially controlled irradiation of liquid resin. This technology enables structures with precise microscale features to be prepared directly from a computer model. In this review, use of stereolithography for processing trimethylene carbonate, polycaprolactone, and poly(d,l-lactide) poly(propylene fumarate)-based materials is considered. In addition, incorporation of bioceramic fillers for fabrication of bioceramic scaffolds is reviewed. Use of stereolithography for processing of patient-specific implantable scaffolds is also discussed. In addition, use of photopolymerization-based rapid prototyping technology, known as two-photon polymerization, for production of tissue engineering scaffolds with smaller features than conventional stereolithography technology is considered.  相似文献   

16.
Although manufacturing contributes a large part to the current performance of companies, few companies deal systematically with issues related to strategic capacity management. As well as decisions on outsourcing and acquisition of resources, this involves triggering process innovation, process development and improving performance by adapting organizational structures. Action Research in companies reveals the importance of capacity management at a strategic level as well as the implementation at tactical and operational levels. The methods of Strategic Capacity Management, as proposed in this paper, provide an industrial company with tools for implementing its manufacturing strategy. Only the design of organizational structures has received attention in the past--little research has been done in the area of manufacturing technology and integral models for sourcing. Through matching product configurations with product-market strategies and product development, the methods point to areas of improvement. The new methods include decision-models for outsourcing and capacity management, product development, and a manufacturing technology scan. All the methods deploy performance evaluations as a base for selecting alternatives to define improvements. These improvements lead to decisions on investments for resources, resource utilization and development of processes, including initiation of manufacturing technologies, as demonstrated by four case studies.  相似文献   

17.
增材制造的多孔金属生物材料广泛应用于植入物骨骼等生物医用工业领域,具有很大的发展潜力,目前,对多孔金属生物材料的研究主要聚焦在多孔生物材料的设计、制造与表面处理等方面.对比了不同增材制造技术的特点,并说明了粉床熔融技术最适合多孔金属生物材料的制造.同时,讨论了不同金属生物材料(生物惰性材料与降解材料)制造多孔生物材料的...  相似文献   

18.
This paper divides technological innovation into two stages: technology development and technology transfer. Then the authors use the panel data of 28 manufacturing industries during 2003–2012 to test the econometric regression model for the industry of the sub stages, which is a regulation on technological innovation in the environment. The results show that: (1) environmental regulation has a significant role in promoting China’s manufacturing technology research patent achievements, and technology into new products, and this indicated that “Porter hypothesis” in the manufacturing sector has been verified; (2) R&D and transfer expenditure have a positive impact on technological innovation. Finally, the authors put forward the corresponding policy recommendations for industry of the environmental regulation on the impact of technological innovation in phases.  相似文献   

19.
增材制造技术是一种无须模具、近净成形的先进制造工艺。不锈钢是一种在核电行业广泛应用的结构材料。实现不锈钢结构件的增材制造将进一步推动增材制造技术的发展,也可为核行业带来革命性改变。以核电用316L不锈钢为例,系统阐述了不锈钢粉末增材制造研究现状,包括粉末制备工艺现状、增材制造成形工艺现状以及成形件的组织性能研究现状。目前,增材制造用316L不锈钢粉末的制备工艺主要为雾化法,粉末的物化性能受制粉工艺参数的影响。在激光粉末床熔融增材制造技术、电子束选区熔化技术和等离子增材制造技术中,尤以激光粉末床熔融增材制造不锈钢的应用最为广泛。增材制造316L不锈钢的组织与性能存在各向异性,但各向异性可通过增材制造的后处理技术消除。目前增材制造最为常用的后处理技术为热处理。与锻造316L不锈钢相比,经热等静压处理的增材制造316L不锈钢的力学性能与辐照性能更优。目前,核用不锈钢的增材制造技术还处于起始阶段,后续应重点关注增材制造的成形机理及成形材料中子辐照性能等内容。  相似文献   

20.
金属增材制造作为前沿热点制造技术之一,近年来在各种重要工业领域的研究和应用日益广泛。利用增材制造技术制备金属材料的过程中,不可避免会造成材料表面粗糙、气孔、未熔合等缺陷,虽然工艺技术的改进可以在一定程度上减小缺陷程度,但至今仍无法完全消除这些缺陷。增材制造金属材料的过程中,缺陷部位通常会成为应力集中源诱发疲劳裂纹的形核,造成金属材料的疲劳寿命下降。首先从表面质量、内部缺陷及微观结构等方面阐述了增材制造金属材料疲劳性能的影响因素;其次从宏观与微观角度概括了疲劳裂纹萌生/扩展机理的研究现状与进展;总结了热处理、表面优化、电磁辅助以及超声辅助等疲劳延寿技术的研究进展;最后讨论了基于机器学习技术的疲劳寿命评估模型,同时展望了机器学习和人工智能技术在增材制造金属材料领域的应用前景,为推动增材制造金属材料的发展和应用提供了借鉴与参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号