首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为了改善武汉东湖疏浚淤泥的物理力学性能,在传统水泥固化处理方法的基础上,掺入外加剂氢氧化钠(NaOH)和石膏,对100多组淤泥固化土试样进行了室内无侧限抗压强度试验,进行固化效果和固化机理的分析。结果表明:在疏浚淤泥固化过程中水泥占主导地位,对固化效果影响最为显著;NaOH促进了水泥的水化作用,增强了淤泥固化土的无侧限抗压强度,表现在固化淤泥早期强度的快速提高;石膏有利于固化淤泥早期强度的形成,其作用持续于整个淤泥固化过程。在水泥掺入比一定时,NaOH和石膏都存在最佳掺量,超过了最佳掺量,强度就会降低。3种固化剂的正交试验得出最佳配比为实际工程的应用提供依据。  相似文献   

2.
为解决传统固化剂硅酸盐水泥(P)能耗高、CO_(2)排放高等问题,研究了以普通硅酸盐水泥(OPC)-矿渣微粉(GBFS)-钢渣微粉(SS)-脱硫石膏(DG)体系制备的土体固化剂(固化剂G)对不同含水率淤泥无侧限抗压强度的影响,并分析其固化机理。结果表明,在淤泥含水率17%时,G固化体强度略高于P固化体,而淤泥含水率45%和70%时,G固化体7 d强度略高于P固化体,28 d强度则低于P固化体。原因是固化剂G在淤泥土中能快速生成大量针棒状的钙矾石(AFt),将淤泥土颗粒连接在一起,形成三维空间网络,并且后期水化硅酸钙凝胶持续增多,逐步填充孔隙,形成致密的整体,强度提高。  相似文献   

3.
通过制作水泥固化有机质淤泥和非有机质淤泥试样,在不同养护温度下的恒温水箱中养护至不同龄期后,开展无侧限抗压试验,研究了有机质和养护温度对水泥固化淤泥强度的影响,并对其内在影响机理进行了分析。  相似文献   

4.
在海涂淤泥中掺入不同量NaOH改变淤泥孔隙溶液的pH值,再掺入等量水泥做固化试验.通过室内试验测试淤泥固化土的基本力学性质,探讨NaOH对仅用水泥固化淤泥的改善作用,研究无侧限抗压强度与NaOH掺量的关系和各个龄期淤泥固化土的应力一应变关系,并分析固化淤泥的微观结构特征.研究表明,NaOH掺量不大于0.8%时,孔隙溶液pH值的改变对Ca (OH)<,2>浓度影响很小,对固化强度的改善效果不明显;NaOH掺量大于1.6%时,随着掺量的增大,可以较大地提高淤泥固化强度,破坏应变较小,具有脆性破坏性质;NaOH掺量为3.2%时,90d强度约为不掺NaOH固化淤泥的2倍;微观结构反映出各种状态水化产物形成网状骨架并且填充孔隙,使得固化土具有一定的强度.  相似文献   

5.
为利用破碎废弃混凝土过程中产生的粒径小于0.16mm的再生微粉,在分析其物理化学成分的基础上,将其替代部分水泥用于固化高含水率淤泥。研究结果表明,淤泥固化土7d无侧限抗压强度均略有下降,但当再生微粉掺量为10%时,28d龄期的固化土强度与纯水泥土的抗压强度相同;适量的Ca(OH)2能够提升再生微粉的活性。  相似文献   

6.
为利用破碎废弃混凝土过程中产生的粒径小于0.16mm的再生微粉,在分析其物理化学成分的基础上,将其替代部分水泥用于固化高含水率淤泥。研究结果表明,淤泥固化土7d无侧限抗压强度均略有下降,但当再生微粉掺量为10%时,28d龄期的固化土强度与纯水泥土的抗压强度相同;适量的Ca(OH)2能够提升再生微粉的活性。  相似文献   

7.
淤泥固化技术可以实现淤泥的资源化利用,有望解决近年来日益严重的疏浚淤泥处置问题。在传统固化剂如石灰、水泥的基础上,探索更有效、低廉的固化剂是很有必要的。本文通过室内试验,将一种新型复合固化剂和水泥、石灰的固化效果进行了对比分析,从淤泥固化土的土颗粒粒径组分及抗压强度角度比较了新型固化剂的效果,结果表明,新型固化剂的固化效果优于传统固化剂水泥和石灰。  相似文献   

8.
为研究淤泥固化土的力学特性及强度预测模型,文中针对宁波滩涂淤泥固化土,开展无侧限抗压强度试验与三轴固结不排水试验。研究表明随着围压增大,固化土的偏应力均相应增大,在不同围压下,均表现为应变软化。强度模型qu=a×(w/Cw)b可以更好地描述固化土强度增长,综合参数e0t/Cw也可用于强度模型,从而为高含水率淤泥固化处理工程提供指导。  相似文献   

9.
为达到河道淤泥的排水减量和加固强度要求,缩短加固处理工期、降低综合处理成本,进行单一电渗、单一固化、模拟电渗-固化的室内对比试验,研究不同通电电流、不同固化剂掺入比、固化龄期等因素对宁波河道淤泥加固效果的影响。同时结合扫描电镜探究了加固土的微观特征变化,并进行加固机理分析。研究结果表明:采用较低的通电电流可降低综合处理成本、处理效果更均匀;固化剂掺入比在6%~10%的范围内,掺入比越高,电渗-固化联合处理相对于采用单一固化加固能够提升的强度幅度更明显;采用相同的固化剂掺入比,电渗-固化联合处理更有利于胶结物和水化产物的生成,电渗排水作用对固化土后期强度增长起到重要作用。  相似文献   

10.
通过室内无侧限抗压强度试验,对水泥固化稳定后的重金属镍污染土的强度特性进行了研究,并对不同镍离子浓度、水泥掺入量和龄期对水泥固化土强度特性的影响进行了分析,对比分析了不同重金属离子对水泥固化土强度特性的影响,最终得到了水泥固化土强度预测公式。  相似文献   

11.
微生物对固化/稳定化污泥长期强度的影响研究   总被引:3,自引:0,他引:3  
李磊  朱伟  吉顺健  郑修军 《岩土工程学报》2008,30(12):1778-1782
固化/稳定化污泥中的微生物通过降解其中的有机质获得能量,同时产生有机酸和无机酸,酸能够分解固化/稳定化处理过程中生成的水化产物,对固化/稳定化污泥的强度产生影响。针对这种问题采用生物反应器强化微生物活性,获得反映微生物活动的有机质降解动力学模型,同时建立有机质降解量同强度损失量之间的关系。通过上述模型和关系可以评价微生物活动对固化/稳定化污泥强度的影响。研究结果表明,微生物对固化/稳定化污泥强度存在一定影响,随着固化/稳定化处理水平的提高,这种影响在逐渐减小。  相似文献   

12.
河、湖等的疏浚淤泥多采用固化方式进行处理。针对固化淤泥材料的干湿稳定性问题,系统开展了干湿循环作用下水泥固化疏浚淤泥的抗剪强度特性试验研究,揭示了固化淤泥在干湿循环作用下抗剪强度的变化机理,并对各影响因素进行了定量分析。结果表明:随着干湿循环次数的增加,固化淤泥的抗剪强度逐渐变化,且先快后慢,最后趋于稳定;干湿循环后,水泥掺量100kg/m~3固化淤泥试样的抗剪强度降低,而水泥掺量150、200kg/m~3试样干湿循环后的抗剪强度不降反增,说明干湿循环对固化淤泥的影响与水泥的掺量有关。较高的干燥温度促进了水泥水化,从而导致水化产物增加,固化淤泥的抗剪强度增大;同时,干湿循环过程中,微裂缝的发育导致固化淤泥的抗剪强度降低,干湿循环对固化淤泥抗剪强度的影响取决于二者的综合作用。  相似文献   

13.
有机质含量对水泥土强度的影响及对策   总被引:3,自引:0,他引:3  
采用有机质含量比较高的盐城泻湖相软土进行了大量的水泥土加固室内试验,并对试验结果进行了分析,得到了强度随龄期增长的公式,并探讨了有机质对强度的不利影响,提出了抵抗有机质含量对水泥土强度影响的对策。  相似文献   

14.
林连海 《山西建筑》2008,34(18):161-162
对不同级配、水泥剂量为2.5%~5%的水泥稳定碎石混合料进行室内强度试验,分析水泥剂量、级配及养生时间对强度的影响,得到强度发展规律,对试验数据进行回归分析,建立了抗压强度与劈裂强度两者之间的相关方程。  相似文献   

15.
滨海盐渍土作公路路基填料试验研究   总被引:7,自引:0,他引:7       下载免费PDF全文
滨海盐渍土是一种特殊土,具有溶陷、腐蚀等不良工程特性,如何将其作为资源用于公路路基填料已成为滨海地区交通建设发展中的重要岩土工程问题之一。从滨海盐渍土的工程应用角度出发,利用石灰、水泥和新型高分子固化材料SH对其进行固化试验研究,并分析探讨了龄期、制样用水、浸泡用水和土中含盐量对固化盐渍土强度的影响及其水稳性。试验结果表明:滨海盐渍土经石灰、水泥和SH综合固化处理后,其强度和水稳性能达到规范要求,可以用作公路路基填料。  相似文献   

16.
水泥土无侧限抗压强度的试验研究   总被引:1,自引:0,他引:1  
向前 《山西建筑》2010,36(18):111-112
分析了土的塑性、水泥和外加剂掺量对水泥无侧限抗压强度的影响。试验结果表明,水泥土无侧限抗压强度随土的塑限增大而先减小后增大,随着水泥掺量的增加,水泥土无侧限抗压强度有明显增长,掺了减水剂的水泥土的7 d强度有所增加,但以后强度几乎没有增长。  相似文献   

17.
添加生石灰/土、粉煤灰改善污泥填埋特性的研究   总被引:1,自引:0,他引:1  
为使脱水污泥满足填埋所需要的最低强度要求,分别以生石灰/土、生石灰/粉煤灰为添加剂,对不同添加量下的污泥填埋特性(土工含水率、十字板抗剪强度、无侧限抗压强度)进行了研究。结果表明,生石灰/土对污泥填埋特性的改善效果优于生石灰/粉煤灰的,采用生石灰:土:污泥:1:4:5的配比在养护20d时,试样的十字板抗剪强度〉25kPa、无侧限抗压强度〉50kPa.可达到最低填埋要求。  相似文献   

18.
李赞成  胡功笠  陈磊 《山西建筑》2007,33(4):185-186
简述了混凝土建筑材料的性能特点,介绍了不同强度混凝土静、动态单轴压缩试验,通过分析其试验结果,表明混凝土静态抗压强度对其动态抗压强度具有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号