首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multistage hybrid flow-shop scheduling problem with multiprocessor tasks has been found in many practical situations. Due to the essential complexity of the problem, many researchers started to apply metaheuristics to solve the problem. In this paper, we address the problem by using particle swarm optimization (PSO), a novel metaheuristic inspired by the flocking behaviour of birds. The proposed PSO algorithm has several features, such as a new encoding scheme, an implementation of the best velocity equation and neighbourhood topology among several different variants, and an effective incorporation of local search. To verify the PSO algorithm, computational experiments are conducted to make a comparison with two existing genetic algorithms (GAs) and an ant colony system (ACS) algorithm based on the same benchmark problems. The results show that the proposed PSO algorithm outperforms all the existing algorithms for the considered problem.  相似文献   

2.
Scheduling a casting sequence involving a number of orders with different casting weights and satisfying due dates of is an important optimization problem often encountered in foundries. In this article, we attempt to solve this complex, multi-variable, and multi-constraint optimization problem by using different implementations of genetic algorithms (GAs). In comparison with a mixed-integer linear programming solver, GAs with problem-specific operators are found to provide faster (with a subquadratic computational time complexity) and more reliable solutions to very large (more than 1 million integer variables) casting sequence optimization problems. In addition to solving the particular problem, the study demonstrates how problem-specific information can be introduced in a GA for solving complex real-world problems.  相似文献   

3.
The design of rolling element bearings has been a challenging task in the field of mechanical engineering. While most of the real aspects of the design are never disclosed by bearing manufacturers, the common engineer is left with no other alternative than to refer to standard tables and charts containing the bearing performance characteristics. This paper presents a more viable method to solve this problem using genetic algorithms (GAs). Since the algorithm is basically a guided random search, it weakens the chances of getting trapped in local maxima or minima. The method used has yielded improved performance parameters than those catalogued in standard tables.  相似文献   

4.
This article uses a hybrid optimization approach to solve the discrete facility layout problem (FLP), modelled as a quadratic assignment problem (QAP). The idea of this approach design is inspired by the ant colony meta-heuristic optimization method, combined with the extended great deluge (EGD) local search technique. Comparative computational experiments are carried out on benchmarks taken from the QAP-library and from real life problems. The performance of the proposed algorithm is compared to construction and improvement heuristics such as H63, HC63-66, CRAFT and Bubble Search, as well as other existing meta-heuristics developed in the literature based on simulated annealing (SA), tabu search and genetic algorithms (GAs). This algorithm is compared also to other ant colony implementations for QAP. The experimental results show that the proposed ant colony optimization/extended great deluge (ACO/EGD) performs significantly better than the existing construction and improvement algorithms. The experimental results indicate also that the ACO/EGD heuristic methodology offers advantages over other algorithms based on meta-heuristics in terms of solution quality.  相似文献   

5.
In this paper we propose the GAPN (genetic algorithms and Petri nets) approach, which combines the modelling power of Petri nets with the optimisation capability of genetic algorithms (GAs) for manufacturing systems scheduling. This approach uses both Petri nets to formulate the scheduling problem and GAs for scheduling. Its primary advantage is its ability to model a wide variety of manufacturing systems with no modifications either in the net structure or in the chromosomal representation. In this paper we tested the performance on both classical scheduling problems and on a real life setting of a manufacturer of car seat covers. In particular, such a manufacturing system involves features such as complex project-like routings, assembly operations, and workstations with unrelated parallel machines. The implementation of the algorithm at the company is also discussed. Experiments show the validity of the proposed approach.  相似文献   

6.
Operation sequencing has been a key area of research and development for computer-aided process planning (CAPP). An optimal process sequence could largely increase the efficiency and decrease the cost of production. Genetic algorithms (GAs) are a technique for seeking to ‘breed’ good solutions to complex problems by survival of the fittest. Some attempts using GAs have been made on operation sequencing optimization, but few systems have intended to provide a globally optimized fitness function definition. In addition, most of the systems have a lack of adaptability or have an inability to learn. This paper presents an optimization strategy for process sequencing based on multi-objective fitness: minimum manufacturing cost, shortest manufacturing time and best satisfaction of manufacturing sequence rules. A hybrid approach is proposed to incorporate a genetic algorithm, neural network and analytical hierarchical process (AHP) for process sequencing. After a brief study of the current research, relevant issues of process planning are described. A globally optimized fitness function is then defined including the evaluation of manufacturing rules using AHP, calculation of cost and time and determination of relative weights using neural network techniques. The proposed GA-based process sequencing, the implementation and test results are discussed. Finally, conclusions and future work are summarized.  相似文献   

7.
In printed circuit board (PCB) assembly, collect-and-place machines, which use a revolver-type placement head to mount electronic components onto the board, represent one of the most popular types of assembly machinery. The assignment of feeders to slots in the component magazine and the sequencing of the placement operations are the main optimisation problems for scheduling the operations of an automated placement machine. In this paper, we present different genetic algorithms (GAs) for simultaneously solving these highly interrelated problems for collect-and-place machines in PCB assembly. First we consider single-gantry machines as the basic type of machinery. In the conventional GA approach all placement operations and the feeder-slot assignment are represented by a single chromosome. In order to increase the efficiency of the genetic operators, we present a novel GA approach, which integrates a clustering algorithm for generating sub-sections of the PCB and grouping the corresponding placement operations. It is shown that the proposed GAs can be extended to schedule dual-gantry placement machines, which are equipped with two independent placement heads and two dedicated component magazines. Hence, component feeders have to be allocated between the two magazines. To solve this allocation problem, two different heuristic strategies are proposed. Finally, detailed numerical experiments are carried out to evaluate the performances of the proposed GAs.  相似文献   

8.
智能化遗传算法   总被引:8,自引:1,他引:7  
针对遗传算法的收敛速度慢、收敛早熟和概率稳定性差等问题提出一种智能化遗传算法(IGA)。首先,建立描述种群进化的统计特征量,为IGA的算法策略提供决策依据。其次,建立种群的自学习算法、种群的自组织算法与遗传算子操作概率的自适应算法,并将这些算法嵌入最优保存简单遗传算法(OMSGA),从而构成IGA。最后,从理论上对算法收敛性及效率进行了分析。通过遗传算法标准测试函数的仿真结果证明了算法的实用性和有效性。  相似文献   

9.
L. Sheng  Y.Q. Ye  Y.H. Wu 《工程优选》2017,49(9):1463-1482
In this article, an improved immune algorithm (IIA), based on the fundamental principles of the biological immune system, is proposed for optimizing the pulse width modulation (PWM) control sequence of a single-phase full-bridge inverter. The IIA takes advantage of the receptor editing and adaptive mutation mechanisms of the immune system to develop two operations that enhance the population diversity and convergence of the proposed algorithm. To verify the effectiveness and examine the performance of the IIA, 17 cases are considered, including fixed and disturbed resistances. Simulation results show that the IIA is able to obtain an effective PWM control sequence. Furthermore, when compared with existing immune algorithms (IAs), genetic algorithms (GAs), a non-traditional GA, simplified simulated annealing, and a generalized Hopfield neural network method, the IIA can achieve small total harmonic distortion (THD) and large magnitude. Meanwhile, a non-parametric test indicates that the IIA is significantly better than most comparison algorithms. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2016.1250894.  相似文献   

10.
In this paper, we investigate a transfer line balancing problem in order to find the line configuration that minimises the non-productive time. The problem is defined at an auto manufacturing company where the cylinder head is manufactured. Technological restrictions among design features and manufacturing operations are taken into consideration. The problem is represented by an integer programming model that assigns design features and cutting tools to machining stations, and specifies the number of machines and production sequence in each station. Three algorithms are developed to efficiently solve the problem under study. The first algorithm uses Benders decomposition approach that decomposes the proposed model into an assignment problem and a sequencing problem. The second algorithm is a hybrid algorithm that mixes Benders decomposition approach with the ant colony optimisation technique. The third algorithm solves the problem using two nested ant colonies. Using 15 different problem dimensions, we compare results of the three algorithms in a computational study. The first algorithm finds optimal solutions of small problem instances only. Second and third algorithms demonstrate optimality gaps less than 4.04 and 3.8%, respectively, when compared to the optimal results given by the first algorithm. Moreover, the second and third algorithms are very promising in solving medium and large-scale problem instances.  相似文献   

11.
In this paper, the problem of simultaneous scheduling of machines and identical automated guided vehicles (AGVs) in flexible manufacturing systems is addressed with the objective of minimizing the makespan. This problem is composed of two interrelated decision problems: the scheduling of machines, and the scheduling of AGVs. Both problems are known to be NP-complete, resulting in a more complicated NP-complete problem when they are considered simultaneously. A new hybrid Genetic-algorithm/heuristic coding scheme is developed for the studied problem. The developed coding scheme is combined with a set of genetic algorithm (GA) operators selected from the literature of the applications of GAs to the scheduling problems. The algorithm is applied to a set of 82 test problems, which was constructed by other researchers, and the comparison of the results indicates the superior performance of the developed coding.  相似文献   

12.
This paper, describes a new yet efficient technique based on fuzzy logic and genetic algorithms (Gas) to solve the find-path problems of a mobile robot, which is formulated as a nonlinear programming problem. In the proposed algorithm, a fuzzy logic controller is used to find obstracle-free directions locally and GAs are used as optimizer to find optimal/near-optimal locations along the obstracle-free directions. This algorithm is found to be more efficient than a steepest gradient descent method. Although the fuzzy-GA method is shown to find slightly inferior or similar solutions to those found using the best-known tangent-graph and A* algorithms, it is computationally faster than them. Moreover, the fuzzy-GA approach is practically more viable than the tangent-graph method, because of former's lesser sensitivity to the number and type of obstacles. The efficiency of the proposed method demonstrated in this paper suggests that it can be extended to solve motion planning problems having moving obstacles.  相似文献   

13.
The distributed permutation flowshop scheduling problem (DPFSP) is a newly proposed topic in the shop scheduling field, which has important application in globalised and multi-plant environments. This study presents a modified iterated greedy (MIG) algorithm for this problem to minimise the maximum completion time among all the factories. Compared with previous approaches, the proposed algorithm is simpler yet more effective, more efficient, and more robust in solving the DPFSP. To validate the performance of the proposed MIG algorithm, computational experiments and comparisons are conducted on an extended benchmark problem set of Taillard. Despite its simplicity, the computational results show that the proposed MIG algorithm outperforms all existing algorithms, and the best-known solutions for almost half of instances are updated. This study can be offered as a contribution to the growing body of work on both theoretically and practically useful approaches to the DPFSP.  相似文献   

14.
An angular spectrum propagation (ASP) algorithm with a scaling parameter to simulate optical diffraction propagation through optical systems is studied. The alterable observation size is obtained by adding the scaling parameter to the Collins formula. A directly mathematical inverse transformation of the ASP algorithm (IASP) is proposed to calculate the source optical field from the known observation optical field, and the results are proved more precise. The IASP algorithm is applied to execute the phase retrieval to derive the aberrations of optical systems from intensity profiles measured in the observation plane. The derived aberrations are fitted by Zernike polynomials under the constraint that the wavefront aberrations are smooth. Numerical simulations are performed to test the accuracy of this method.  相似文献   

15.
Genetic algorithms (GAs) are efficient stochastic search techniques for approximating optimal solutions within complex search spaces and used widely to solve NP-hard problems. Genetic algorithm includes a number of parameters whose different levels strictly affect the performance of the algorithm. The general approach to determine the appropriate parameter combination of GA depends on too many trials of different combinations, and the best one of them that produces good results is selected for the programme, which would be used for problem solving. A few researchers studied on the parameter optimisation of GA. In this paper, response surface-dependent parameter optimisation is proposed to determine the optimal parameters of GA. Results are tested for benchmark problems that are most common in mixed-model assembly line balancing problems of type-I.  相似文献   

16.
Under fierce market competition, only products that can meet market demands timely and are competitive can enjoy advantages in the market. Production planning is important in enhancing product competitiveness by effectively reducing both production cost and time. To complete the planning task, a better assembly sequence that includes selecting suitable part suppliers and satisfying the multi-period demands should be designed. In this paper, a mathematical model is presented for dealing with this planning problem, and its objective is to minimise the value of integrated criteria. A hybrid heuristic algorithm, which involves guided genetic algorithm combined with Pareto genetic algorithm, known as Guided-Pareto genetic algorithm (Gu-PGA), is developed for solving the addressed problem. Finally, experiments are conducted to validate the proposed algorithm. The results demonstrate that the Gu-PGA is more effective in solving the multi-period supplier selection problem.  相似文献   

17.
Assembly sequence planning (ASP) and assembly line balancing (ALB) play critical roles in designing product assembly systems. In view of the trend of concurrent engineering, pondering simultaneously over these two problems in the development of assembly systems is significant for establishing a manufacturing system. This paper contemplates the assembly tool change and the assembly direction as measurements in ASP; and further, Equal Piles assembly line strategy is adopted and the imbalanced status of the system employed as criteria for the evaluation concerning ALB. Focus of the paper is principally on proposing hybrid evolutionary multiple-objective algorithms (HEMOAs) for solutions with regard to integrate the evolutionary multi-objective optimization and grouping genetic algorithms. The results provide a set of objectives and amend Pareto-optimal solutions to benefit decision makers in the assembly plan. In addition, an implemented decision analytic model supports the preference selection from the Pareto-optimal ones. Finally, the exemplifications demonstrate the effectiveness and performance of the proposed algorithm. The consequences definitely illustrate that HEMOAs search out Pareto-optimal solutions effectively and contribute to references for the flexible change of assembly system design.  相似文献   

18.
Assembly sequence planning (ASP) is the foundation of the assembly process planning which plays a key role in the whole product life cycle. In this paper, a unique ASP reasoning method supported by the artificial intelligent technique of case-based reasoning (CBR) is proposed and developed. First, based on the previous ASP literatures review and the CBR characteristics analysis, the systematic architecture of the CBR based ASP is presented. Then, some key techniques including assembly case modelling, similar case retrieving, case based reasoning, and case base maintenance, etc., are explored thoroughly. To enhance the efficiency and quality of the reasoning process, genetic algorithm (GA) is designed and applied to automatically inferring of the reference assembly sequence. Finally, the corresponding software system with an engineering example is given to demonstrate the effectiveness of the CBR based ASP.  相似文献   

19.
Y. C. Lu  J. C. Jan  G. H. Hung 《工程优选》2013,45(10):1251-1271
This work develops an augmented particle swarm optimization (AugPSO) algorithm using two new strategies,: boundary-shifting and particle-position-resetting. The purpose of the algorithm is to optimize the design of truss structures. Inspired by a heuristic, the boundary-shifting approach forces particles to move to the boundary between feasible and infeasible regions in order to increase the convergence rate in searching. The purpose of the particle-position-resetting approach, motivated by mutation scheme in genetic algorithms (GAs), is to increase the diversity of particles and to prevent the solution of particles from falling into local minima. The performance of the AugPSO algorithm was tested on four benchmark truss design problems involving 10, 25, 72 and 120 bars. The convergence rates and final solutions achieved were compared among the simple PSO, the PSO with passive congregation (PSOPC) and the AugPSO algorithms. The numerical results indicate that the new AugPSO algorithm outperforms the simple PSO and PSOPC algorithms. The AugPSO achieved a new and superior optimal solution to the 120-bar truss design problem. Numerical analyses showed that the AugPSO algorithm is more robust than the PSO and PSOPC algorithms.  相似文献   

20.
In this paper, we contemplate the problem of scheduling a set of n jobs in a no-wait flexible flow shop manufacturing system with sequence dependent setup times to minimising the maximum completion time. With respect to NP-hardness of the considered problem, there seems to be no avoiding application of metaheuristic approaches to achieve near-optimal solutions for this problem. For this reason, three novel metaheuristic algorithms, namely population based simulated annealing (PBSA), adapted imperialist competitive algorithm (AICA) and hybridisation of adapted imperialist competitive algorithm and population based simulated annealing (AICA?+?PBSA), are developed to solve the addressed problem. Because of the sensitivity of our proposed algorithm to parameter's values, we employed the Taguchi method as an optimisation technique to extensively tune different parameters of our algorithm to enhance solutions accuracy. These proposed algorithms were coded and tested on randomly generated instances, then to validate the effectiveness of them computational results are examined in terms of relative percentage deviation. Moreover, some sensitive analyses are carried out for appraising the behaviour of algorithms versus different conditions. The computational evaluations manifestly support the high performance of our proposed novel hybrid algorithm against other algorithms which were applied in literature for related production scheduling problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号