首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A novel tool orientation optimisation algorithm is proposed for 5-axis NC machining with a short ball-end cutter. It can generate collision-free and smooth tool orientations along with a safe and shortest tool length (SSTL). The use of shorter cutters without collision is a key advantage of 5-axis machining because the magnitude of tool deflection and the stability of cutting process are greatly affected by the slenderness ratio of the cutter. Existing methods can calculate the SSTL in the NC simulation process. However, the SSTL is essentially determined by the tool orientations and should be considered in the process of tool path generation. To overcome this limitation, a new tool orientation optimisation algorithm is proposed. The SSTL is determined by optimising the tool orientations under the constraints of global collision avoidance and tool orientation smoothness. The algorithm first computes the global accessibility cone and the SSTL along each accessible tool orientation. Then the tool orientations are optimised based on the discrete dynamic programming with the SSTL along the whole tool path being the optimisation objective. Finally, the tool path is generated by globally smoothing the tool orientations. Computational examples and cutting experiment are given to illustrate the validity and efficiency of the proposed algorithm.  相似文献   

2.
Selecting optimal cutting tools that can answer to the performance criteria of manufacturing economics (quality, productivity, cost, etc) is an important step in planning the manufacture of components. Achieving this, however, is difficult because of the many constraints involved in the tool selection process. This paper describes a method for determining a theoretical optimal combination of cutting tools given a set of 3D volumes or 2D profiles. Optimal tools are selected by considering residual material that is inaccessible to oversized cutters and the relative clearance rates of cutters that can access these regions of the selected machining features. The current implementation described does not give exact results because several machining parameters have been ignored during the selection process, such as tool path length, plunge rates, etc. However, the experimental studies carried out to verify the theoretical results suggest that while these factors may influence the absolute values calculated, in general, their influence on the relative ranking of the tools is insignificant. The results presented here suggest that the 'correct' combination of tools could significantly reduce machining times. Consequently, the paper concludes with a discussion of how modifications to typical tool path generation routines in commercial CAM systems could improve productivity.  相似文献   

3.
This paper presents a new efficient approach to NC tool path generation for five-axis surface machining. First, an efficient cutter, named a drum-taper cutter, is proposed; its key dimension is determined to avoid gouging in surface machining according to the maximum curvature of the surface calculated with a genetic algorithm. Then, based on the drum-taper cutter, the tool paths are generated so that the scallop height formed by adjacent tool paths in machining is kept constant, and an improved algorithm for calculating the interval between tool paths is presented. Finally, an example of tool path generation with the above method for arbitrary surface impeller machining is conducted, and the results show that the presented method leads to a significant reduction in the total tool path length and is accompanied by a reduction in machining time.  相似文献   

4.
Presented in this paper is a tool path generation procedure for three-dimensional profile curve machining on three-axis machines, which is essential for making dies of automotive press panels. While sculptured surface machining has received a significant amount of attention, there has been very little work on profile curve machining. The most distinctive feature of profile curve machining is that the machine operator determines the exact cutter radius at the stage of numerical control (NC) machining. For this reason, profile curve machining usually makes use of the cutter radius compensation functionality of an NC controller. In this paper, four technological requirements for the profile curve machining are identified: (1) maintaining a constant machining width; (2) avoiding controller alarms; (3) avoiding unbalanced cutter wear; and (4) retaining down-milling. To satisfy these requirements, a tool path generation procedure is proposed, implemented and tested.  相似文献   

5.
A method of generating optimal tool paths for sculptured surface machining with flat-end cutters is presented in this paper. The inclination and tilt angles, as well as the feed directions of the cutter at each cutter contact point on a machining path are optimised as a whole so that the machining width of the tool path can be as large as possible, and concerns such as smooth cutter motion, gouging avoidance, scallop height and machining widths overlap are also considered when calculating a path. A multi-criteria tool path optimisation model is introduced, and it is converted into a single objective optimisation with the weighted sum method. The Differential Evolution (DE) algorithm is suitable for solving this highly non-linear problem. However, the searching process of the DE algorithm may be trapped in local minima due to large number of design variables. Therefore, an algorithm combining the DE algorithm and the sequence linear programming algorithm is developed to solve this optimisation model. The proposed method is applied to two freeform surfaces to illustrate its effectiveness.  相似文献   

6.
实体数控仿真刀具扫掠体的构造   总被引:2,自引:0,他引:2  
实体数控仿真具有重要意义,刀具扫掠体构造是实体数控铣削仿真的重要环节.分析了刃具轮廓、刀具运动形式和加工指令对构造刀具扫掠体的影响.基于ACIS平台研究了刀具扫掠体的构造,提出了动态构造刀具扫掠体算法,给出了该算法的流程图.并将其应用到正在研制和开发的实体数控铣削仿真系统中,给出了2.5D实体数控铣削仿真的应用实例。  相似文献   

7.
A barrel cutter has a cutting segment with a large radius on its profile, and this arc segment allows the cutter to tilt away from the part surface, avoiding the collisions of the tool with the part. Therefore, barrel cutters are suitable for five-axis blisk machining. However, the barrel cutters are more challenging for CAM software to generate paths. A method of generating collision-free and large-machining width flank milling paths with smooth axes movements for blisk machining with barrel cutters is proposed. Local gouge between the tool flute surface and the blade to be machined is considered, and the collisions of the blisk with the non-cutting parts of the tool, i.e. tool shank and holder, are also detected. The machined part geometry is the complement of the cutter’s swept envelope from the stock. Accordingly, the swept profile of the cutter at each cutter contact point is employed to evaluate the machining width naturally. Thereafter, a multi-criteria tool path generation model is established, and it is converted into a single-objective optimization with the weighted sum method. An algorithm based on the Differential Evolution algorithm is developed to solve this model. The numerical example illustrates the effectiveness of the proposed method.  相似文献   

8.
基于曲率的曲面加工刀位轨迹生成算法   总被引:3,自引:0,他引:3  
提出了一种自由曲面五轴数控加工无干涉刀位轨迹的生成算法。该方法利用曲面的曲率来确定环形刀的刀具姿态,使得刀具随被加工曲面的形状变化而倾斜,从而生成无干涉的刀位轨迹。  相似文献   

9.
The problem of optimal tool orientation determination in five-axis flat-end milling of sculptured surfaces is examined in this paper. The optimal tool orientation avoids local and global gouging of the tool and maximises a specific criterion related to machining efficiency. Two new criteria are introduced in this paper to quantify the tool orientation quality at a cutter contact point: infinitesimal machining volume (IMV) and infinitesimal machining area (IMA). The IMV criterion is used to maximise the material removal at the cutter contact point. The IMA criterion attempts to identify tool orientations that would lead to minimised overall tool path length. Using one of these criteria, an optimisation problem can be formulated to determine the optimal tool orientation among feasible gouge-free orientations. It is shown that the commonly adopted criterion of machining strip width in the determination of the optimal tool orientation cannot contribute towards maximising the material removal and does not really result in minimum overall tool path length. Results from various case studies have indicated that the newly introduced criteria can be used to generate optimal tool orientations that significantly increase machining efficiency.  相似文献   

10.
Greedy tool heuristic approach to rough milling of complex shaped pockets   总被引:2,自引:0,他引:2  
The milling of complex pockets bounded by NURBS surfaces is usually broken into rough and finish milling, with the former taking up the bulk of the machining time. The total machining time can be reduced if the proper combination of end-mills of different sizes are used to machine in different regions. This paper presents a new greedy tool heuristic approach to the determination of the machining volume that should be allocated to different tools selected from among a large set of available tools. Subsequent machining planning can then be performed by repeated application of standard 2-D milling algorithms. The proposed new approach of multi-tool rough milling promises to reduce the machining time of complex shaped parts such as molds and casting patterns. The presented techniques can be used in CAD/CAM systems to automate NC tool path generation for complex pockets machining.  相似文献   

11.
Unified rough cutting tool path generation for sculptured surface machining   总被引:1,自引:0,他引:1  
Based on zigzag and contour-offset methods for cutting layers described in pixel maps, three unified tool path generation modules for NC rough cutting of sculptured surfaces are presented. The zigzag-stack-without-island module generates the tool path for a to-be-machined area without any inside island. The zigzagstack-with-islands module is for a to-be-machined area with single or multiple inside islands. For small corners or to-be-machined areas left by the first cutter in a cutting sequence, the boundary-offset-for-corners module is used. An obstacle avoidance module that generates rapid traversal tool paths between adjacent cutting layers or different cutting tool path segments in the same cutting layer is also developed. These modules are easy to implement and robust. When combined with the divide-and-conquer machining method, unnecessary lifts can be avoided and the generated tool paths will be more effective in terms of total machining time for the best cutting sequence (Tao 1999).  相似文献   

12.
Five-axis machining allows continuous adjustment of cutter orientation along a tool pass. Unfortunately, the flexibility has not been fully exploited due to the separate consideration of tool path generation and cutter orientation in current machining methods. This paper presents an integrated method (IM) for tool path generation, which is tightly integrated with the orientation strategy, to minimise tool path length under the constraint of smooth cutter orientation. Distinctively, cutter orientation along a tool pass is optimised by balancing considerations of maximum material removal and smoothness of cutter movement. Further, the intervals between successive tool passes are maximised according to the optimised orientation. In the paper, the IM is combined with the quadric method, a recently developed cutter orientation strategy, for iso-parametric machining with a flat-end cutter. However, the method could be applied to other orientation strategies with different machining mechanisms and cutter types. Simulated examples illustrate that the IM is more efficient in machining than established methods.  相似文献   

13.
Strategies for cutter size optimisation and interference-free tool path generation are proposed for five-axis flank milling of centrifugal impellers. To increase the material removal rate and provide a stronger tool shank during flank milling, the cutter size is first maximised under a set of geometric constraints. The tool path is then globally optimised in accordance with the minimum zone criterion for the determined optimal cutter size. Aside from the local interference of the cutter with the design surface, the global interferences with the hub surface and the adjacent blade surface are also considered in the optimisation models. Interference is indicated by the signed distance from the sampled point on the blade surface to the tool envelope surface. This distance is calculated without constructing the envelope surface. On the basis of the differential property of the distance function, we choose a sequential linear programming method in implementing the optimisations. This approach applies to generic rotary cutters, such as cylindrical and conical tools. Simulations are conducted to obtain the optimal cutter size and generate an interference-free tool path for a practical impeller. Simultaneously, a software module that can generate tool envelope surfaces and verify geometric errors is used to validate the proposed method.  相似文献   

14.
CAD/CAM systems currently generate the tool cutter path for many NC operations. However no mathematical model is available for computing an optimal tool cutter path for face milling. By utilizing such a model, the minimum length of cut can be identified for face milling flat surfaces. In this paper, the authors present an analytical procedure from which the optimal cutting path may be derived.  相似文献   

15.
In this paper, we address the problem of optimizing the tool path plan for patchby-patch machining of parts having multiple surface patches. The tool path plan defines the sequence in which the patches are to be machined and the entry and exit points for the cutting-tool within each patch. Curent CAD/CAM systems require the user to select the tool path plan. When the number of surface patches increases and alternative machining strategies need to be evaluated, it is often difficult for the user to select the optimal tool path plan that minimizes the total time to machine the part. In this paper, we address three cases of this optimization problem, and present models that can be used to incorporate tool path plan evaluation and optimization capabilities in CAD/CAM systems.  相似文献   

16.
The two additional rotational motions of five-axis machining make the determination of the optimal feed direction and tool orientation a challenging task. A new model to find the optimal feed direction and tool orientation maximising the machining width and avoiding local gouging at a cutter contact (CC) point with a flat-end cutter considering the tool path smoothness requirement is developed in this paper. The machining error is characterised by a signed distance function defined from a point on the bottom tool circle of the cutter to the design surface. With the help of the differential evolution approach, the optimisation model can be resolved to determine the optimal tool orientation and feed direction at a given CC point, and generate the smooth tool paths following the optimal feed direction. Simulation examples demonstrate the developed techniques can improve the tool orientation and feed direction at a CC point to increase the machining width, improving the efficiency of freeform surface machining.  相似文献   

17.
探讨了机器人外形美观设计的重要性和外型复杂曲面加工的可行性,从而阐述了研制“S”形球面铣刀的意义,然后研究了加工刀具的前刀面和后刀面的数学模型与工业实现的机构可行性,并给出了相关的数学公式和加工数据,最后得出结论用简单的2轴完全可以实现在传统上用4轴数控机床才能加工的“S”形球头刀,为简化复杂刀具的加工进行探讨。  相似文献   

18.
数控加工中的刀位干涉检查   总被引:1,自引:1,他引:0  
干涉检查是数控加工的关键问题之一,本文提供了一套可靠的干涉检查算法。介绍了研制CAX系统的基本原则;说明刀位计算方法;详细讨论曲面间、曲面自身及边界部位的干涉检查算法,其方法均是首先将曲面离散为三角小平面,然后计算球头刀球心至有界三角小平面的距离。该距离即作为判断干涉与否的依据。运行表明,算法可靠,效率较高。附有若干实例。  相似文献   

19.
Tool path generation is an interesting and challenging task in free-form surface machining. Iso-planar tool path generation is one of the common approaches to dealing with this task. However, it suffers from an inherent drawback that intersecting intervals of the iso-planar method are limited to surface geometric features. This results in poor machining efficiency in flat regions due to redundant machining paths. For this problem, a new tool path generation method for triangular meshes is proposed based on the least-squares conformal map (LSCM). After LSCM parameterisation with minimal stretching energy, the triangular meshes are unfolded on a plane, where the principal component analysis (PCA) technique is employed to determine a suitable drive line for calculating cutter contact paths by the iso-planar strategy. Therefore, the tool paths are generated in a plane and the unevenness of the traditional iso-planar method is improved. The feasibility and effectiveness of the developed method is demonstrated through a test experiment.  相似文献   

20.
This article applies a two-dimensional representation of the machining geometry relevant to tool path generation for the three-axis ball-end milling of sculptured surfaces. A two-dimensional geometric model detecting the machined strip is suggested as the concept for the ‘effective cutting profile’ which fits well into the three-dimensional machining geometry. The model is the same as the intersection of the cutter with the plane perpendicular to the tangent direction of the cutter location curve and incident with the cutter location point. In order to achieve the specified machining accuracy, an iterative approach is needed. The paper also presents a new iterative method to generate tool paths with a constant scallop height. It is based on the proposed model which resorts to a two-dimensional representation of the three-dimensional machining geometry. The proposed method reduces significantly the computing time to generate tool paths. Implementations and illustrated examples are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号