首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Effective formation of product platforms helps adapt to product demand changes and decrease time-to-market and lead time. The product platform groups the core elements of product family members into a common module used to derive different product variants by combining it with different components. A new delayed product differentiation (DPD) platform network model, which applies median-joining phylogenetic networks (MJPN), is proposed. It is used for forming product platforms and determining the assembly line layout of modular product families. The MJPN is traditionally used for DNA sequences’ mapping, analysis, clustering and tracing evolutionary trends. The concept of assembly/disassembly modular platforms, whereby both assembly and disassembly of components are used to derive the final product variants from the platform, is utilised. The proposed model determines the required number and composition of a product platform and defines the DPD points. The developed dynamic assembly/disassembly platforms enhance routing and product mix flexibility due to having different platforms that can be used to produce the same product variant. A family of household kettles is used to demonstrate the application of the proposed model. A metric is presented for determining the effectiveness of a given platform in delaying the product differentiation, hence increasing the efficiency of mass customisation. The proposed metric, applied to the case study, demonstrated that the proposed platform formation model using MJPN is more capable of postponing the product differentiation point.  相似文献   

2.
Redesigning a product family entails carefully balancing the trade-offs between commonality and differentiation that are governed by the underlying platform architecture. Numerous metrics for commonality and variety exist to support product family and product platform design; however, rarely are they used in concert to help redesign platforms and families of products effectively. In this paper, we introduce an integrated approach that uses multiple product family metrics to establish an effective platform redesign strategy. Specifically, we present a detailed procedure to integrate the generational variety index, product line commonality index, and design structure matrix to prioritize components for redesign based on variety and commonality needs in a family of products. While all three of these tools exist in the literature and have been used extensively to support product family design, the novelty in our work lies in their integration to establish a redesign strategy for platform architectures that achieves a better balance between the commonality and variety within a product family. To demonstrate the proposed approach, case studies involving two generations of wireless computer mice and two families of dishwashers are presented. Ongoing and future work is also discussed.  相似文献   

3.
Owing to the increased customer demands for make-to-order products and smaller product life-cycles, today assembly lines are designed to ensure a quick switch-over from one product model to another for companies' survival in market place. The complexity associated with the decisions pertaining to the type of training and number of workers and their exposition to the different tasks especially in the current era of customized production is a serious problem that the managers and the HRD gurus are facing in industry. This paper aims to determine the amount of cross-training and dynamic deployment policy caused by workforce flexibility for a make-to-order assembly. The aforementioned issues have been dealt with by adopting the concept of evolutionary fuzzy system because of the linguistic nature of the attributes associated with product variety and task complexity. A fuzzy system-based methodology is proposed to determine the amount of cross-training and dynamic deployment policy. The proposed methodology is tested on 10 sample products of varying complexities and the results obtained are in line with the conclusions drawn by previous researchers.  相似文献   

4.
This research deals with an operator assignment problem in which cell loading and product sequencing are taken into account in labour-intensive assembly cells. In each cell the number of assembly tasks is more than the number of operators, so multi-assembly tasks are assigned to each operator. Because the assembly procedure and time required for each assembly task are quite different for different products, some tasks will be transferred when the product changes. Reducing the number of task transfers can smooth the process of product change. A four-phase methodology is proposed to minimise the total manpower required and task transfers at the same time. The four phases are manpower configuration design, calculating the number of task transfers, manpower requirement minimization and cell loading and product sequencing optimization. A case study from a bicycle assembly company is introduced. For comparison, two methodologies are applied. The results show that the proposed four phase methodology can provided the solution with fewer task transfers based on the same total manpower requirement. However, when the number of products increases, the computation time of the proposed four-phase methodology increases rapidly.  相似文献   

5.
This paper aims to propose an accurate and quick assembly time estimation method using the modular arrangement of predetermined time standards in the product design stage. It describes a classification of 2382 assembly operations that are incurred in manually assembling consumer electronics such as air conditioners, washing machines and refrigerators, and a method of choosing representative motions comprising work elements by examining the frequency distribution of the assembly operation’s motions. It then presents criteria for assigning time values associated with the movement of the representative motions using the design factors employed in design for assembly and the layout factors of an assembly line. A case study then presents the practicality of the method, the statistical results of which indicate that the proposed method would be accurate enough for practical purposes.  相似文献   

6.
A product platform is a set of common components, modules or parts from which a stream of derivative products can be created. Product platform design is typically performed as redesign and consolidation of existing products to create more competitive product families by reducing part variety and standardizing components. The main disadvantage of such an approach is that the benefits of product platform design are achieved only after a number of parts have been designed and manufactured, with all the associated expenditure. A number of approaches, referred to as “top-down approaches”, have been proposed recently to design the platforms since the original design of the product families. However, current top-own approaches have two major limitations: (1) they do not enable multiple levels of commonality for different components and features, and (2) they have been applied to products that are variegated in one specification, whereas products are typically variegated in multiple specifications. This paper describes a rigorous top-down approach for synthesizing product platforms that facilitates the realization of a stream of customized product variants, and which accommodates naturally multiple levels of commonality and multiple customizable specifications. The proposed approach is based on the formulation of the platform design as a problem of access in a geometric space. The proposed approach is illustrated with a case example, namely, the design of a product platform for a line of customizable pressure vessels.  相似文献   

7.
The optimal fixture layout is crucial to product quality assurance in the multi-station sheet metal assembly processes. Poor fixture layout may lead to product variation during the assembly processes. In this paper, a genetic algorithm (GA)-based optimisation approach has been presented for the robust fixture layout design in the multi-station assembly processes. The robust fixture layout is developed to minimise the sensitivity of product variation to fixture errors by selecting the appropriate coordinate locations of pins and slot orientations. In this paper, a modified state space model for variation propagation in the multi-station sheet metal assembly is developed for the first time, which is the mathematical foundation of optimal algorithm. An e-optimal is applied as the robust design criteria. Based on the state space model and design criteria, a genetic algorithm is used to find the optimal fixture layout design. The proposed method can greatly reduce the sensitivity level of product variation. A four-station assembly process of an inner-panel complete for a station wagon (estate car) is used to illustrate this method.  相似文献   

8.
Product family design and platform-based product development have garnered much attention. They have been used to provide nearly customised products to satisfy individual customer requirements and simultaneously achieve economies of scale during production. The inherent challenge in product family design is to balance the trade-off between product commonality (how well the components and functions can be shared across a product family) and variety (the range of different products in a product family). Quantifying this trade-off at the product family planning stage in a way that supports the engineering design process has yet to be accomplished. In this paper, we introduce a graphical evaluation method, the product family evaluation graph (PFEG), that allows designers to choose the ‘best’ product family design option among sets of alternatives based on their performance with respect to an ideal commonality/variety trade-off determined by a company's particular competitive focus, and guides designers towards a more desirable trade-off between commonality and variety in an existing product family. Two necessary supporting pieces for developing the PFEG are also proposed. One piece is the development of commonality and variety indices to quantitatively capture the degree of commonality and variety in a product family and its functions and components. We introduce two sets of commonality and variety indices–the CDI (commonality versus diversity index) for commonality (CDIC) and variety (CDIV), and the CMC (comprehensive metric for commonality) for commonality (CMCC) and variety (CMCV)–to achieve this. The other supporting piece is the development of a quantitative representation of the ideal trade-off between commonality and variety in a product family, known as the commonality/variety trade-off angle α, based on the elements that characterise a company's competitive focus and their industry-wide competitors. A linear regression model is used to link the qualitative competitive focus to a quantitative engineering perspective, and then to estimate the ideal trade-off angle. The commonality/variety trade-off angle can then be applied to the PFEG to help designers evaluate a product family or compare product family design alternatives. Most importantly, the PFEG is not just the graph of the two sets of indices; it is the representation of the commonality/variety trade-off relative to the desired competitive focus. Four families of power tools are used to illustrate how the computation of such indices supports product family design evaluation in the PFEG. In this paper, we only use the CDI in the example application, but the CMC can be computed using the same approach.  相似文献   

9.
Assessing and improving commonality and diversity within a product family   总被引:1,自引:1,他引:0  
At a time when product differentiation is a major indicator of success in the global market, each company is looking to offer competitive and highly differentiated products. This differentiation issue is restricted by the design of platform-based products that share modules and/or components. It is not easy to differentiate products in a market that is often overwhelmed by numerous options. A platform-based approach can be risky because competition in the global market can become an internal competition among similar products within the family if there is not enough differentiation in the family. Thus, the goal for the product platform is to share elements for common functions and to differentiate each product in the family by satisfying different targeted needs. To assess commonality in the family, numerous indices have been proposed in the literature. Nevertheless, existing indices focus on commonality and reflect an increase in value when commonality increases but do not positively reflect an increase in the value as a result of diversity; hence, the commonality versus diversity index (CDI) is introduced in this paper to assess the commonality and diversity within a family of products or across families. The CDI has variable levels of depth analysis to help designers design or improve the product family. Two case studies using single-use cameras and power tool families highlight the usefulness of this new index.  相似文献   

10.
New trends in product design require the use of modularity as key feature aimed to improve functional performance and the generation of open architecture products. For mechanical systems, one of the challenges during early design stages of these products involves the proper selection of joining methods among their constructive components. A robust joint selection process must consider product requirements, life cycle analysis and eventual procedures for assembly and disassembly. However, the general approach towards a Design-for-Assembly (DFA)/Design-for-Disassembly (DFD) only considers design, manufacturing and in some cases final disposal stage. Additionally, most of the works found in the literature are merely focused on assembly operations, disregarding economic and environmental benefits from optimising disassembly complexity. Herein, a functional characterisation of mechanical joint methods for the assembly and disassembly activities that take place throughout the product life cycle is proposed, focusing on open architecture products. Additionally, a classification of joining methods, a joint complexity metric valuation and a selection process are proposed for the conceptual design stage. The approach integrates both DFA and DFD principles in a formal methodology. The proposed selection roadmap can be implemented to increase product sustainability positively regarding resources optimisation, operational time and costs in reuse, remanufacturing and recycling tasks.  相似文献   

11.
A mixed-model assembly line is a type of production line which is used to assemble a variety of product models with a certain level of similarity in operational characteristics. This variety causes workload variance among other problems resulting in low efficiency and line stops. To cope with these problems, a hierarchical design procedure for line balancing and model sequencing is proposed. It is structured in terms of an amelioration procedure. On the basis of our evolutionary algorithm, a genetic encoding procedure entitled priority-based multi-chromosome (PMC) is proposed. It features a multi-functional chromosome and provides efficient representation of task assignment to workstations and model sequencing. The lean production perspective recognises the U-shape assembly line system as more advanced and beneficial compared to the traditional straight line system. To assure the effectiveness of the proposed procedure, both straight and U-shape assembly lines are examined under two major performance criteria, i.e., number of workstations (or line efficiency) as static criterion and variance of workload (line and models) as dynamic criterion. The results of simulation experiments suggest that the proposed procedure is an effective management tool of a mixed-model assembly line system.  相似文献   

12.
As a consequence of increasing interests in customised products, mixed-model lines have become the most significant components of today’s manufacturing systems to meet surging consumer demand. Also, U-shaped assembly lines have been shown as the intelligent way of producing homogeneous products in large quantities by reducing the workforce need thanks to the crossover workstations. As an innovative idea, we address the mixed-model parallel U-shaped assembly line design which combines the flexibility of mixed-model lines with the efficiency of U-shaped lines and parallel lines. The multi-line stations utilised in between two adjacent lines provide extra efficiency with the opportunity of assigning tasks into workstations in different combinations. The new line configuration is defined and characterised in details and its advantages are explained. A heuristic solution approach is proposed for solving the problem. The proposed approach considers the model sequences on the lines and seeks efficient balancing solutions for their different combinations. An explanatory example is also provided to show the sophisticated structure of the studied problem and explain the running mechanism of the proposed approach. The results of the experimental tests and their statistical analysis indicated that the proposed line design requires fewer number of workstations in comparison with independently balanced mixed-model U-lines.  相似文献   

13.
Product family design entails all of the challenges of product design while adding the complexity of coordinating the design of multiple products in an effort to maximize commonality across a set of products without compromising their individual performance. This paper presents the Variation-Based Platform Design Method (VBPDM) for product family design, which aims to satisfy a range of performance requirements using the smallest variation of the product designs in the family. In the first stage of the VBPDM, the product platform around which the product family is to be developed is identified. The product platform is common to all of the products in the family and represents the maximum standardization possible considering the variety of performance requirements that must be satisfied. To satisfy the range of performance requirements for the product family, a ranged set of solutions is found using variation-based modeling. A compromise Decision Support Problem (DSP) is formulated to solve the tradeoff between satisfying the variety requirement and maximizing platform commonality. Platform commonality is achieved by introducing a commonality goal that seeks to minimize the deviation of the input design variables while satisfying the range of performance requirements. Those design variables that show small deviations are held constant to form the product platform. In the second stage of the VBPDM, each individual product is designed around the common platform such that the functional requirements for each product in the family are best satisfied. As an example, the proposed method is used to develop a family of universal electric motors designed to meet a range of torque requirements. The results are compared against previous work on the same example.  相似文献   

14.
王巧玉  田凌 《高技术通讯》2006,16(8):802-807
在研究了虚拟现实建模语言(VRML)模型特点以及协同装配工艺规划过程的基础上,将以VRML三维模型为设计信息载体的协同装配工艺规划仿真分为无约束的规划仿真和基于约束的规划仿真,并提出了相应的实现方法.所提方法使网络化的同步协同装配规划操作成为可能,通过实时交流,使产品装配工艺规划能够在集合多方设计经验的基础上方便快捷地实现.应用实例的应用结果表明,所提方法可快速发现设计缺陷并显著地缩短产品工艺规划周期.  相似文献   

15.
Mixed-model assembly lines are widely used in a range of production settings, such as the final assembly of the automotive and electronics industries, where they are applied to mass-produce standardised commodities. One of the greatest challenges when installing and reconfiguring these lines is the vast product variety modern mixed-model assembly lines have to cope with. Traditionally, product variety is bypassed during mid-term assembly line balancing by applying a joint precedence graph, which represents an (artificial) average model and serves as the input data for a single model assembly line balancing procedure. However, this procedure might lead to considerable variations in the station times, so that serious sequencing problems emerge and work overload threatens. To avoid these difficulties, different extensions of assembly line balancing for workload smoothing, i.e. horizontal balancing, have been introduced in the literature. This paper presents a multitude of known and yet unknown objectives for workload smoothing and systematically tests these measures in a comprehensive computational study. The results suggest that workload smoothing is an essential task in mixed-model assembly lines and that some (of the newly introduced) objectives are superior to others.  相似文献   

16.
面向产品族的混流装配线平衡研究   总被引:1,自引:0,他引:1  
周金应  但斌  饶凯 《工业工程》2006,9(4):65-69
基于产品族的模块化与通用性,研究了面向产品族装配的混流线平衡问题.基于对一族产品装配过程的聚类分析,提出了面向产品族的混流装配线的平衡设计方法和模型,可以为大规模定制企业实现面向产品族的混流装配提供参考,并用案例说明本文方法的应用.  相似文献   

17.
Product family-based assembly sequence design methodology   总被引:5,自引:0,他引:5  
Efforts taken by manufacturing companies to meet the increasing demand for product variety often lead to a proliferation of subassemblies. In this paper, we show that careful design of the product assembly sequence helps to create generic subassemblies that reduce subassembly proliferation and the cost of offering product variety. This approach of designing the assembly sequence to maximize the benefit from commonality of components and assembly operations, referred to as product family-based assembly sequence design, is the focus of this paper. After introducing the approach with a simple example, we formalize the notion of generic subassemblies, and present an algorithmic approach to identify generic subassemblies. We illustrate the algorithm with an example from the literature of an assembly from industry, and provide computational test results of the complexity and benefits of product family-based assembly sequence design.  相似文献   

18.
Nowadays, companies must be able to provide a higher degree of product customisation to fulfil the needs of the increasingly sophisticated customer demand. This can only be achieved by having flexible production systems, able to cope with extended product ranges and with the uncertainty and variability of demand in the current market environment. The purpose of this paper is to present a contribution related to facilities design that accounts for this issue, by presenting flexible U-shaped line configurations for an assembly system. In this type of line, whenever the production volume or product mix changes, the only modification in the line will be the number of operators working in the line, as the physical workstations remain fixed. The relevance of the problem is stated and a heuristic procedure, based on ant colony algorithms, developed to address this problem is described. The results of the application of the proposed procedure to an assembly line of a major manufacturer of electronic security systems are reported.  相似文献   

19.
Product platforms represent an effective strategy implemented by manufacturers to cope with dynamic market demands, decrease lead-time and delay products differentiation. A decision support system (DSS) for product platforms design and selection in high-variety manufacturing is presented. It applies median-joining phylogenetic networks (MJPN) for the platforms design and phylogenetic tree decomposition for platforms selection by determining the product family phylogenetic network and defines the platforms at various levels of assembly corresponding to different trade-offs between number of platforms (variety) and number of assembly/disassembly tasks (customisation effort). Product platforms are reconfigured and customised to derive final product variants. The phylogenetic tree is decomposed in multiple levels, from the native platforms to the final variants. New Platforms Reconfiguration Index (PRI) and Platforms Customisation Index (PCI) were developed as metrics to evaluate the platforms customisation effort. A case study of a large family of plastic valves is used to demonstrate the DSS application. It shows reduction of 60% in platforms variety and increases in platform customisation assembly/disassembly tasks by only 20% leading to significant production and inventory efficiencies and cost savings. This methodology supports companies in the design and selection of best product platforms for high-variety to reduce cost and delivery time.  相似文献   

20.
Two-sided assembly lines are usually designed to produce large-sized products such as automobiles, trucks and buses. In this type of production line, both left-side and right-side of the line are used. In parallel assembly lines, one or more product types are produced on two or more assembly lines located in parallel to each other. Both production lines have several serious practical advantages. For this purpose, in this paper, two or more two-sided assembly lines located in parallel to each other are considered and a tabu search algorithm which combines the advantages of both types of production lines is developed. To assess the effectiveness of the proposed algorithm, a set of test problems are solved. The proposed algorithm is illustrated with two examples, and some computational properties of the algorithm are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号