共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
融合多种几何特征的三维人脸识别算法 总被引:1,自引:0,他引:1
由于对光照、姿态变化的不敏感, 三维人脸识别算法已经受到人们的极大关注, 其中三维人脸特征的表示、获取以及多种表示特征的有效融合仍然是三维人脸识别的核心问题. 本文提出一种三维人脸识别方法, 该方法针对归一化的三维人脸数据, 选取人脸的曲面特征和描述人脸特征相互关系矩阵的主分量特征作为人脸表示特征, 给出了各特征的提取方法及同类特征的相似性度量, 进而提出了一种对各类特征进行加权融合的方法, 即通过分析不同特征的分类识别能力, 根据Fisher的线性判别准则, 以类内和类间特征相似度的均值差与类内和类间的散度平方和之比的大小作为该类特征权重, 在决策层为不同的特征赋予不同的权重. 最后, 基于公开发布的BJUT-3D三维人脸数据库进行了识别性能实验. 实验结果证明, 本文的特征融合方法比一般的加权策略有更好的识别性能. 相似文献
3.
在二维PCA人脸识别算法的基础上,将PCA算法用于三维人脸识别,采用鼻尖点作为特征点。在CASIA三维人脸数据库中进行测试,达到了约为89.5%的识别率,能够识别出受外界干扰如扭转角度的图片,该算法性能优良。 相似文献
4.
针对二维人脸识别对姿态与光照变化较为敏感的问题,提出了一种基于三维数据与混合多尺度奇异值特征MMSV(mixture of multi-scale singular value,MMSV)的二维人脸识别方法。在训练阶段,利用三维人脸数据与光照模型获取大量具有不同姿态和光照条件的二维虚拟图像,为构造完备的特征模板奠定基础;同时,通过子集划分有效地缓解了人脸特征提取过程中的非线性问题;最后对人脸图像进行MMSV特征提取,从而对人脸的全局与局部特征进行融合。在识别阶段,通过计算MMSV特征子空间距离完成分类识别。实验证明,提取到的MMSV特征包含有更多的鉴别信息,对姿态和光照变化具有理想的鲁棒性。该方法在WHU-3D数据库上取得了约98.4%的识别率。 相似文献
5.
《计算机应用与软件》2014,(7)
针对Gabor特征维数高难题,提高光照人脸的识别性能,提出一种基于Gabor特征融合和最小二支持向量机的人脸识别算法(Gabor-LSSVM)。首先采用Gabor滤波器提取人脸图像的多尺度和多方向特征,并将相同尺度不同方向的特征融合,初步降低特征维数;然后采用核主成分分析对融合特征进行选择,进一步降低特征维数;最后采用最小支持向量机建立分类器对人脸进行识别,并采用Yale B和PIE人脸库进行仿真测试。结果表明Gabor-LSSVM的人脸识别正确率和识别效率都得到了提高。 相似文献
6.
为了得到高质量的人脸特征,提高人脸识别性能,提出基于改进的Gabor变换和(2D)2NMF(二维非负矩阵分解法)的人脸识别方法。改进的Gabor变换提取的特征有较高的品质,鲁棒性增强。二维非负矩阵分解法降维能大大降低图像数据维数,缩短计算时间,提高识别率。最后在ORL人脸库中进行实验,结果表明改进的Gabor变换和二维NMF方法相结合计算时间略微增加,但识别效率明显提高,从而证明了该方法的有效性。 相似文献
7.
在二维PCA人脸识别算法的基础上,将PCA算法用于三维人脸识别,采用鼻尖点作为特征点。在CASIA三维人脸数据库中进行测试,达到了约为89.5%的识别率,能够识别出受外界干扰如扭转角度的图片,该算法性能优良。 相似文献
8.
目的 针对3维人脸识别中存在表情变化的问题,提出了一种基于刚性区域特征点的3维人脸识别方法。方法 该方法首先在人脸纹理图像上提取人脸图像的特征点,并删除非刚性区域内的特征点,然后根据采样点的序号,在人脸空间几何信息上得到人脸图像特征点的3维几何信息,并建立以特征点为中心的刚性区域内的子区域,最后以子区域为局部特征进行人脸识别测试,得到不同子区域对人脸识别的贡献,并以此作为依据对人脸识别的结果进行加权统计。结果 在FRGC v2.0的3维人脸数据库上进行实验测试,该方法的识别准确率为98.5%,当错误接受率(FAR)为0.001时的验证率为99.2%,结果表明,该方法对非中性表情下的3维人脸识别具有很好的准确性。结论 该方法可以有效克服表情变化对3维人脸识别的影响,同时对3维数据中存在的空洞和尖锐噪声等因素具有较好的鲁棒性,对提高3维人脸识别性能具有重要意义。 相似文献
9.
10.
提出了二维主成分分析(2DPCA)与二维线性鉴别分析(2DLDA)相结合的双向压缩投影的子空间人脸识别方法.该方法在进行一次2DPCA运算后,对特征矩阵进行转置,再进行2DLDA运算,与(2D)~2PCA与(2D)~2LDA相比,充分利用了2DPCA和2DLDA的优点,既包含了样本的类别信息,又消除了图像矩阵行和列的相关性,有效地提取了行和列的识别信息,识别特征维数也大幅度减少.在ORL和PERET人脸库上的实验表明,在不影响识别速度的情况下,其识别率优于现有二维特征提取方法. 相似文献
11.
12.
研究人脸识别精度问题。由于人脸图像中存在大量干扰信息的缺点,而造成了人脸识别正确率下降,为了解决上述问题,提出了一种基于特征互补图像快速特征融合算法。算法通过对人脸图像的位平面切片图像分析,采用位平面图像分解法,通过各种合成策略构造多幅样本图像。并突出高位平面图像,采用两种加权策略将每一幅人脸图像样本都生成"特征互补图像"。然后,直接用图像的二维典型相关分析(2DCCA)法对两种特征互补图像进行特征抽取。最后通过在ORL国际标准人脸库上进行的实验,结果表明,高位平面图像的典型相关鉴别特征提高了正确识别率,并且因为摒弃了原始人脸图像的大部分干扰信息所以具有更强的鲁棒性。 相似文献
13.
基于HOG多特征融合与随机森林的人脸识别 总被引:1,自引:0,他引:1
针对人脸识别在复杂环境下识别率低的问题,提出了一种基于梯度直方图(HOG)多特征融合与随机森林的人脸识别方法.该方法通过HOG特征描述子对人脸进行特征提取.首先以网格作为采样窗在整个人脸图上进行整体HOG特征的提取,并将人脸图像分成均匀子块,在包含有人脸关键部分的子块中提取局部HOG特征.然后通过二维主成分分析(2DPCA)和线性判别分析(LDA)对整体和局部特征进行降维,并进行特征层融合形成最终分类特征,最后通过随机森林分类器对其进行分类.FERET人脸库、CAS-PEAL-R1人脸库、真实场景人脸库实验表明,该方法对光照具有鲁棒性,且有较高的识别率和较短的识别时间. 相似文献
14.
15.
16.
基于拉普拉斯微分算子提出了一种用于三维人脸样本的表情识别方法。首先使用曲面变形的方法对三维人脸样本进行样本配准处理。然后基于拉普拉斯微分算子计算三维人脸的表情特征,并根据训练样本的特征向量集构建一个关于三维人脸表情的字典。最后使用稀疏表示方法对三维人脸表情进行识别分析。实验结果表明,该方法能够有效地提高三维人脸表情识别的准确率。 相似文献
17.
基于Gabor小波变换多特征向量的人脸识别鲁棒性研究 总被引:1,自引:0,他引:1
传统的Gabor小波变换人脸识别技术在曲线奇异性的表达上存在着不足,难以识别包含表情的人脸信息,针对该问题,提出了结合Gabor小波变换和多特征向量的人脸识别算法。算法首先利用Gabor小波变换的频率及方向选择性来提取出人脸的多尺度、多方向上的Gabor特征,并组成联合稀疏模型,通过计算可以得到各个方向和尺度上Gabor特征的共同特征和表情特征,利用这两个特征向量可以精确重构测试图像的特征向量。仿真实验结果表明,所提出的方法能够有效提高带表情人脸图像的正确匹配率,改善识别效果 。 相似文献