首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
为了分析土工袋挡墙的地震动力响应特征,研制一个叠层剪切模型箱,借此开展土工袋挡墙大型振动台模型试验。结果表明:土工袋挡墙作为一种新型的柔性挡土墙型式,在地震过程中依靠自身变形耗散了大量能量,加速度放大系数随墙高的升高而增大,而随输入地震动峰值加速度的增大而有减小的趋势;土工袋挡墙与墙后填土具有相近的基频与类似的频谱特征,墙体与填土变形基本协调,整个结构的基频随着输入地震动峰值加速度的增大与经受的振动次数增加逐渐减小;土工袋挡墙墙–土间峰值动土压力随着输入地震动峰值加速度的增大呈增大趋势,沿墙高分布近似为"S"型(或称为"双峰型");经受多次振动后土工袋挡墙的累计残余水平位移较小,在0.6 g的输入地震动作用下,最大累计位移仅为墙高的0.29%,表明土工袋挡墙具有良好的抗震性能。  相似文献   

2.
地震动土压力水平层分析法   总被引:4,自引:1,他引:4  
Mononobe-Okabe公式是挡土结构设计中关于侧向动土压力计算的常用方法。但Mononobe-Okabe公式的诸多假设使得其公式适用范围受限,而且无法给出地震动土压力合力作用点位置及地震动土压力强度沿墙背分布情况。为弥补以上不足,基于Mononobe-Okabe平面破裂面假设,采用水平层分析法推导地震条件下主动和被动土压力合力及其作用点位置、土压力强度分布公式,并采用图解法得到临界破裂角的显式解答。公式考虑水平和垂直地震加速度、墙背倾角、挡墙墙背与填料黏结力和外摩擦角、均布超载等诸多因素,可以适用于黏性土和无黏性土的主动和被动土压力计算。分析结果表明,地震条件下土压力强度沿墙高为非线性分布,在相应简化假设条件下公式与Mononobe-Okabe公式完全一致。  相似文献   

3.
针对无黏性砂土,采用自制模型设备,模拟悬臂式排桩等柔性挡墙前倾挠曲变形位移模式,开展有限宽度范围土体变形破坏特征及被动土压力分布规律的室内模型试验。试验结果表明,柔性挡墙后被动区土体滑动破裂面不通过墙踵而交于墙身,接近或达到被动极限状态时形成贯穿的连续曲面,墙后剪切滑裂面与墙土界面之间形成竖向土拱,活动挡墙与滑裂面底部夹角处部分土体被"楔紧"。随着水平位移增大,挡墙上部被动土压力增大较明显且在有限宽度范围内一直呈增大趋势,挡墙下部土压力较易达到稳定;随着宽高比增大,达到临界状态进入半无限状态时,被动区砂土土压力均趋于稳定。柔性挡墙被动土压力呈非线性分布,随着深度增加,被动土压力逐渐增大,然后快速减小,有限宽度内宽高比越小,被动土压力的峰值越大,相同宽高比条件下,挡墙嵌固深度越大,土压力峰值越大。  相似文献   

4.
悬臂挡墙是一种适用于地震地区的支挡结构,应用广泛,墙后填料一般具有一定的坡度角,其抗震设计仍面临如何确定地震土压力大小及其作用点、变形及破坏模式等诸多问题。另外,微型桩具有较好的抗震性能,其在浅层滑坡治理加固等领域得到了广泛的应用,针对其在横向动荷载作用下的受力特征、荷载与变形累积等方面的研究还相对较少。为此开展了悬臂挡墙支护的微型桩加固边坡地震响应特性的离心振动台模型试验研究,同时对典型工况进行了数值模拟。主要从3个方面对微型桩–悬臂挡墙支护边坡的地震响应特征进行了分析讨论:(1)边坡的地震加速度响应及其坡顶沉降变形;(2)微型桩地震响应与弯矩分布;(3)悬臂挡墙动土压力大小及作用点、弯矩大小及惯性弯矩的影响、地震位移变形模式、残余弯矩累积发展趋势。对输入输出加速度的传递函数分析表明,边坡土体对输入地震波中接近其自振频率的频率分量具有显著的放大效应;微型桩结构上部设置刚性连接梁能明显改善其受力性能,微型桩的柔韧性与延性等使其在地震荷载作用下可以耗散更多能量;悬臂挡墙上的惯性弯矩超过动弯矩的22%以上,不容忽视,当挡土墙后部填土坡度角较大且同时坡顶上部有荷载时,得到的动土压力系数ΔKa...  相似文献   

5.
有限土体刚性挡墙平动模式被动土压力试验研究   总被引:2,自引:0,他引:2  
经典的库仑或朗肯土压力理论无法适用有限土体情况下的土压力问题。利用研制的土压力试验模型装置,进行了一组不同填土宽度的刚性挡墙平动模式室内模型试验,采用微型土压力盒量测从静止状态到被动极限状态的水平土压力分布的变化,利用颗粒图像测速技术研究土体内滑裂面发展规律。试验结果表明:半无限土体情况下的被动土压力大小、分布和合力作用点与库仑被动土压力较为接近。而有限宽度情况下移动挡墙上各深度的被动土压力值均大于库仑被动土压力,且土体宽度越窄,挡墙的被动极限位移有增大趋势,挡墙下部的被动土压力增大更明显,土压力分布的非线性程度愈高,被动土压力系数越大,被动土压力合力作用点明显往墙底移动。随着填土宽度的减小,填土表面的隆起愈明显,滑裂面的倾角略有增大。当移动挡墙达到或接近极限状态时,固定边界上的水平土压力随填土宽度的减小而逐渐增大,甚至接近库仑被动土压力。  相似文献   

6.
在非地震主动土压力公式的基础上,用微分薄层法给出了地震条件下被动土压力公式,其中填土面倾斜、墙背倾斜、填土为c~土、墙背与填土间同时存在c~作用、墙后破裂体存在水平向和竖向的地震加速度,目前所见的地震情况下和非地震情况下的被动土压力公式均是本文公式的特例。对上述同一条件下的挡墙用过墙锺的整块破裂体作静力平衡分析(如库仑分析)得到的总土压力与本文微分薄层法得到的总土压力,大小相等,但作用点位置本法明显增加,由此理论和很多实验得知,设计抗震和非抗震时的很多类挡墙要引起足够的重视。  相似文献   

7.
采用ABAQUS有限元热力耦合模块,以热膨胀类比膨胀土增湿膨胀,对膨胀土–EPS缓冲层–挡墙体系进行了数值模拟,研究了EPS缓冲层与墙体和膨胀土间的界面摩擦、墙后膨胀土的宽度、EPS块体间隙等因素对EPS缓冲层减压性能的影响。结果表明:(1)膨胀土–EPS缓冲层之间、挡墙–EPS缓冲层之间的界面摩擦力使作用在挡墙上的侧压力产生重分布,进而显著影响挡墙的倾覆力矩,但对水平推力影响很小;(2)墙后膨胀土宽度越宽,作用在膨胀土–EPS缓冲层–挡墙上的侧压力越大。当膨胀土宽度超过挡墙高度的2倍时,墙后侧压力不再明显增加;(3)组成EPS缓冲层的EPS块体间的间隙不影响挡墙上的侧压力分布。结合数值模拟结果,对膨胀土–EPS缓冲层–挡墙体系的工作机理进行了分析,提出了挡墙侧压力的计算模型。以重力式挡墙为例,说明了该计算模型在膨胀土–EPS缓冲层–挡墙体系设计中的应用,为EPS用于膨胀土挡墙缓冲减压的工程设计提供参考。  相似文献   

8.
平移模式下挡墙非极限土压力计算方法   总被引:2,自引:0,他引:2  
在考虑挡墙平动位移效应和内摩擦角折减系数的基础上,利用薄层斜条分法,提出墙后填土为无黏性土时挡墙非极限主动和被动土压力计算公式。为验证该方法的可行性,对平移模式下挡墙进行主动和被动土压力模型试验,并利用该方法对2个模型试验进行计算分析。试验及计算结果均表明:不同s/sc比值情况下,主动土压力随深度增加表现出先增大后减小的趋势,且在0.6H(H为挡土墙高度)位置与库仑土压力曲线出现交点;被动土压力沿深度非线性增大,但其值均小于库仑被动土压力值;主动土压力合力作用点位置均高于库仑土压力合力作用点,而被动土压力合力作用点位置均低于库伦土压力合力作用点,并且随着s/sc比值的提高差距越大。  相似文献   

9.
在循环荷载作用下,对加筋土挡墙进行有限元模拟分析,研究黏性土加筋土挡墙的动力特性.重点研究挡墙回填土为黏性土条件下,不同加筋材料、动荷载峰值加速度对加筋土挡墙的影响.由计算结果认为在循环荷载作用下加筋土挡墙水平位移受动荷载峰值加速度影响较大,加筋土挡墙最大位置出现在挡墙下部,黏性回填土的加筋土挡墙变形量要小于砂土回填的加筋土挡墙.  相似文献   

10.
在墙后填土中布设拉筋可有效改善支挡结构的抗震性能.为此开展悬臂式加筋土组合支挡结构在频率5 Hz正弦波加载条件下的振动台模型试验,测试了小震0.11g、中震0.24g、大震0.39g作用下,模型挡墙及墙后填土的振动加速度、墙背动土压力、墙体振动位移、筋带动拉力等时空响应特征,分析模型结构动力特性、墙-土相互作用及加筋体...  相似文献   

11.
强地震荷载作用下临水挡土墙的拟动力法稳定性分析   总被引:1,自引:1,他引:0  
 假设墙后填土破坏面为曲面,用正弦波模拟地震加速度时程曲线,采用拟动力法对临水挡土墙进行稳定性分析,确定了挡土墙和墙后填土所受的阻尼力和惯性力,获得地震荷载作用下挡土墙的被动土压力、抗滑和抗倾覆稳定性系数的封闭形式解析解。定量分析地震加速度、放大系数、墙后填土的物理力学参数和动水压力对挡土墙的滑动位移、挡土墙的抗滑和抗倾覆稳定性系数的影响,得出当地震加速度、放大系数越大,水位越高,内摩擦角越小,临水挡土墙的稳定性越差。  相似文献   

12.
《Soils and Foundations》2021,61(5):1251-1272
The effects of backfill cohesion on the seismic behavior of a retaining wall are discussed on the basis of a series of 1 g shaking table model tests. The model test results show that a retaining wall having cohesive backfill soil is more stable than a wall without it. The following aspects are observed in the cases of cohesive backfill soil from a detailed analysis using the measured seismic active earth pressure acting on the retaining wall: 1) the existence of a stable region at the top part of the backfill soil, 2) the increase in shear force acting on the boundary between the back face of the wall and the backfill soil, and 3) the mobilization of cohesion along the failure plane in the backfill soil.The existence of a stable region results in reductions in both the driving force and the overturning moment, while it tends to disappear under a high seismic load. The increase in shear force acting on the back face of the wall contributes to an increase in the resistant moment against the overturning of the wall with respect to the base of the footing, and it mobilizes even under a high seismic load. Mobilized cohesion along the failure plane contributes to the support of the soil wedge, resulting in a decrease in the seismic active earth pressure. It also continuously mobilizes even under a high seismic load.These observations indicate that giving consideration to the backfill cohesion when calculating the seismic active earth pressure leads to the rationalization of the evaluation of the seismic performance of the retaining wall even though further study is required, namely, carrying out the validation in the prototype scale and setting the applicable conditions for the seismic design.  相似文献   

13.
桩板墙地震动力特性的大型振动台模型试验研究   总被引:1,自引:1,他引:0  
 通过1个比尺1∶8的二级支护边坡大型振动台模型试验,研究地震条件下桩板式挡墙加速度、动位移和动土压力等的响应特性,模型试验以汶川波、大瑞人工波和Kobe波3种地震波作为振动台激振波,汶川波采用水平(X)向、竖直(Z)向和水平竖直(XZ)双向3种激振方式,大瑞人工波和Kobe波采用水平竖直(XZ)双向1种激振方式,研究地震波作用方向和方式以及地震波形等地震动参数对桩板式挡墙地震动力响应特性的影响规律。研究表明:桩板式挡墙加速度、动位移和动土压力等的响应特性,主要受水平向地震波作用的影响,且与地震波类型、激振方向和方式以及测点位置有关。加速度动力响应峰值呈现出沿墙高非线性增大的特征,因而在采用拟静力法时,有必要在考虑支挡结构组合方式、边坡特性及地震波作用方式等影响的基础上,采用合适的地震荷载拟静力值的放大系数。动位移响应峰值和永久位移值呈现出非线性响应特性,水平竖直(XZ)双向地震波激振下,桩板墙主要产生离开土体向边坡外侧平移的动位移模式。动土压力响应峰值沿墙高呈现出两头小中间大的非线性分布特征。  相似文献   

14.
墙后有限宽度无黏性土主动土压力试验研究   总被引:2,自引:0,他引:2  
针对无黏性土体,开展了刚性挡墙平动、绕墙底转动和绕墙顶转动3种墙体主动变位模式情况下墙后有限宽度土体土压力试验。通过观察墙后不同宽度土体的破坏过程及对土压力的全程量测,对其破坏模式及土压力分布规律进行了探讨。试验结果表明,墙后有限宽度土体的破坏面为一连续曲面,随着墙后土体宽度的增加,土体破坏面逐渐向外侧偏移,最终趋于某一固定位置,但始终位于库仑破坏面内侧。土压力值监测表明,库仑土压力理论并不适用于有限宽度土体。当填土宽度为有限宽度时,土压力值小于库仑主动土压力值,其差距随土体宽度减小而逐渐增大。当墙体平动时,土压力值沿墙高先增大后减小;墙体绕墙底转动时土压力值则呈线性增长趋势;而当墙体绕墙顶转动时,在挡墙上部出现了明显的土拱效应。  相似文献   

15.
《Soils and Foundations》2006,46(2):135-146
Gravity retaining walls are widely used in Japan because of their simplicity of structure and ease of construction. In design procedure, the seismic coefficient method is widely employed, in which the earth pressure and inertia force are calculated by converting the seismic force into a static load. Earth pressure is usually calculated by the Mononobe-Okabe formula, which applies Coulomb's earth pressure computed from the equilibrium of forces in the static state. However, the Hyogoken-Nambu Earthquake of 1995 prompted the need to reexamine seismic design methods for various civil engineering structures. Gravity retaining wall is one of such structures whose seismic design has to be reexamined and rationalized. At this moment there is no clear empirical basis for converting the seismic force into a static load. The design method has to take into account the behavior of gravity retaining walls during earthquakes. At the Public Works Research Institute, model tests were conducted on gravity retaining walls using a centrifuge. The acceleration and displacement of a retaining wall and its backfill as well as the earth pressure acting on the wall were measured simultaneously together with the deformation behavior of the wall and its backfill, using a high-precision high-speed camera. The data show that the hypothetical conditions of the Mononobe-Okabe formula do not appropriately express the real behavior of backfill and gravity retaining walls during earthquakes.  相似文献   

16.
各向异性砂土主动土压力的离心模型试验研究   总被引:1,自引:1,他引:1  
 利用新研制的土压力离心模型试验设备,通过土压力盒测量作用在挡土墙上的土压力分布,利用非接触图像测量系统(GIPS)测量土体位移,对各向异性的南京云母砂分别进行沉积面铅直和水平两个方向的土压力离心模型试验。通过对比试验得到的土压力分布与理论公式计算得到的各向同性砂土土压力分布,以及两种沉积方向的砂土的滑裂面位置,对各向异性砂土的土压力及土体变形破坏问题进行初步研究。结果表明:随着挡土墙向远离墙后填土方向运动的位移不断增大,作用在挡土墙上的土压力逐渐减小,墙后填土中各点的位移不断增大,在墙后土体中逐渐形成滑裂面。当挡土墙的位移量达到10-3H(H为试样模型高度)时,墙后填土达到主动极限平衡状态。受到片状云母颗粒排列方向的影响,沉积面铅直的土体滑裂面比沉积面水平的滑裂面略显平缓。  相似文献   

17.
《Soils and Foundations》2019,59(2):419-432
The failure mechanism plays an important role in the active seismic earth thrusts acting on cantilever retaining walls. Cantilever retaining walls can be classified as having a long heel or a short heel based on the intersection between the stem of the retaining wall and the failure surface. In the literature, different seismic earth thrust calculation methods have been suggested considering the long heel or the short heel cases. However, no unique study has been done that is applicable to walls with either a long heel or a short heel. The aim of this study is to suggest a new active seismic earth thrust calculation method for granular soils which is applicable to retaining walls with either a short heel or a long heel using a pseudo-static approach. Three different earth thrusts are considered to be acting on three different parts of a wall backface. Each thrust is derived in terms of the parameters defining the wall geometry, the soil properties and the seismic activity. The thrust coefficients are determined by maximizing the sum of the horizontal components of the earth thrusts. An algorithm is developed and coded for this aim. The results of the suggested method are compared with those of other conventional methods and an experimental study.  相似文献   

18.
Rankine classic earth pressure solution has been expanded to predict the seismic active earth pressure behind rigid walls supporting c–φ backfill considering both wall inclination and backfill slope. The proposed formulation is based on Rankine's conjugate stress concept, without employing any additional assumptions. The developed expressions can be used for the static and pseudo-static seismic analyses of c–φ backfill. The results based on the proposed formulations are found to be identical to those computed with the Mononobe–Okabe method for cohesionless soils, provided the same wall friction angle is employed. For c–φ soils, the formulation yields comparable results to available solutions for cases where a comparison is feasible. Design charts are presented for calculating the net active horizontal thrust behind a rigid wall for a variety of horizontal pseudo-static accelerations, values of cohesion, soil internal friction angles, wall inclinations, and backfill slope combinations. The effects of the vertical pseudo-static acceleration on the active earth pressure and the depth of tension cracks have also been explored. In addition, examples are provided to illustrate the application of the proposed method.  相似文献   

19.
Retaining walls are subjected to dead loads from backfill and adjacent structures, live loads and other loads from the vicinity of the structure. Retaining walls need to withstand earth pressure generated from above mentioned loads satisfactorily throughout their service life. Lateral earth thrust on retaining walls can be minimized by placing a compressible inclusion, such as, EPS geofoam, between the backfill and retaining wall. The present study is aimed at understanding both short- and long-term influence of EPS geofoam on surcharge induced lateral earth pressures on retaining walls through 1-g model studies. Four densities of geofoam in the range of 10–25 kg/m3 and three thicknesses of geofoam in the range of 25–75 mm were used in the present study. Lateral earth pressure at several locations along the height of the wall were monitored using earth pressure cells. Geofoam compression and backfill settlements under the surcharge load were also quantified using image analysis. From the series of model tests, it was observed that with the use of geofoam, lateral earth pressure on retaining wall was reduced under both short- and long-term loading conditions. However, higher reduction was observed under long-term loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号