首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为研究特大型岩溶地区回填体特性对桩基础荷载传递的影响,提高岩溶桩基的安全性与经济性,本文考虑特大型岩溶地区桩周回填体与基桩协调变形产生侧摩阻力的特性,基于指数荷载传递函数,获得了特大型岩溶地区回填体基桩荷载–沉降曲线计算方法,并结合现有研究成果与工程实例对该计算方法进行验证,结果表明本文方法与实际工程的结果很吻合,在此方法的基础上,分析各参数对岩溶桩基荷载–沉降曲线的影响,分析结果表明:桩基的荷载–沉降曲线随着轴向应变、碎石粒径与桩参数?s的变化而变化,桩基的极限承载力随着轴向应变与桩参数?s的增加而增加,随着碎石粒径的增加反而减小。  相似文献   

2.
为探明断层发育区桥梁桩基的竖向承载特性及受力机理,通过土工离心模型试验,以桩基与断层水平距离及断层埋深变化为工况,开展近断层桥梁桩基础的竖向极限承载力、轴力和桩侧摩阻力演化规律研究。结果表明:断层的存在,抑制了桩侧摩阻力的发挥,进而影响近断层桥梁桩基础的竖向承载特性。桩基与断层水平距离由1D增加至5D,断层两侧桩基竖向极限承载力影响度平均降低16.62%~19.24%,桩身轴力逐步增大且衰减变缓,桩侧摩阻力逐步降低;断层埋深由0cm增加至32cm时,桩基竖向极限承载力影响度降低了9.16%~15.22%。近断层桥梁桩基设计时,可根据桩侧岩土体受影响范围,以此确定桩基与断层水平距离临界值与合理桩长。  相似文献   

3.
利用自主研发的多向桩基加载系统,开展了室内模型试验,研究了膨胀土中桩基分别在最优含水率和饱和含水率条件下的下压和上拔荷载桩基的承载特性。试验结果表明:膨胀土含水率的变化,对抗压桩的极限承载力影响更为明显,对抗拔桩的极限位移影响更为明显。随着含水率的增加,尽管抗压桩和上拔桩的极限侧摩阻力均减小,且减小程度接近,但上拔荷载作用下极限侧摩阻力明显低于下压荷载的极限侧摩阻力。不同含水率条件下,抗压试验桩身极限侧摩阻力呈抛物线形分布,而上拔试验桩身极限侧摩阻力呈线性分布,含水率的增加使抗压桩和上拔桩的极限承载力显著减小,且抗压桩减小幅度更大,但抗压桩的极限承载力始终大于上拔桩的极限承载力。  相似文献   

4.
为探明公路桥梁桩基穿越超大型溶洞的荷载传递机制,开展回填法施工的25.5 m溶洞的桩基受力现场试验;结合数值仿真方法,研究采用回填法处治溶洞时,穿越不同高度溶洞的桩基竖向承载特性和荷载传递机制,重点探明回填材料固结引起的负摩阻力最大值及范围占比变化规律。结果表明:采用回填法处治溶洞后,荷载较小时,穿越超大型溶洞桩基的轴力在一定范围内增大,桩侧产生负摩阻力;桩基的竖向极限承载力随洞高增加呈减小趋势;洞高由5 m增至30 m时,极限荷载作用下负摩阻力最大值增幅达102.7%,其范围占比由0%增加至24%,洞高超过25 m后,负摩阻力范围占比超过20%。若采用回填法处治溶洞,建议当洞高为5~10 m时,可忽略负摩阻力的影响;为超大型溶洞时,需考虑负摩阻力对桩基竖向承载特性的不利影响;洞高为15,20,25,30 m时,溶洞顶面下0.092 H,0.145 H,0.213 H,0.240 H(洞高)范围内按负摩阻力计算桩基承载力。  相似文献   

5.
针对沿海地区地质条件复杂以及淤质地层桩基成孔质量差与灌注桩承载能力不足等问题,本文通过现场试验、理论计算与有限元分析相结合的方法,研究不同地层参数与土体参数下钻孔灌注桩承载性能,分析不同淤质地层深度与含水率对桩周摩阻力分布、极限稳定位移量与承载力的影响。研究表明,桩周摩阻力沿桩长基本呈均匀分布,在淤质土层界面略有提升。随含水率增加,桩周平均摩阻力、极限稳定位移量以及承载力逐渐减小;另外,随着桩径增加,淤质土特性对桩基承载力影响增加,当桩径超过1 300mm后,土体特性的影响效果逐渐减小。研究成果可作为沿海地区钻孔灌注桩桩基设计与承载力复核的参考依据。  相似文献   

6.
《工程勘察》2021,49(10):1-5,63
相比于传统测试方法,自平衡法在桩基承载性能测试中具有较多优势。本文以李子沟特大桥为工程依托,通过自平衡法对泥浆护壁成孔桩和干作业成孔桩开展静载试验,研究成桩方式对桩基承载特性的影响。分析桩身轴力、桩身侧摩阻力的变化规律,根据等效Q-s曲线确定试桩的极限承载力。结果表明:成桩方式对桩体极限承载力的影响显著,干作业成孔方式有利于提高桩体的承载力,而泥浆护壁成孔方式降低桩身侧摩阻力和桩端阻力,不利于桩体承载力的发挥。研究成果不仅可以为桩基设计和施工提供参考,同时丰富了桩基理论。  相似文献   

7.
为研究砂岩地层变截面桩抗拔承载特性,本文对变截面桩和等截面桩进行了现场静载荷试验,分析比较了两种桩型的侧阻力与轴力作用特征,并将试验结果与规范计算值进行了比较。结果表明:变截面桩的抗拔承载特性与等截面桩相似,其桩身侧阻力值主要受岩土体性质的影响,与桩径无关,但是桩径和桩长的增加能有效提高桩基极限抗拔承载力。受地层变化和应力集中影响,变截面桩桩身变形量增大,桩与岩土体相对位移增大,侧阻力充分发挥,故在变截面处桩身轴力和侧阻力急剧变化。采用规范方法计算变截面桩和等截面桩的极限抗拔承载力,计算值分别为试验值的29.6%~38.8%和29.5%~65.5%,说明规范方法偏于保守。  相似文献   

8.
为了研究嵌岩深度超过4倍桩径的深嵌岩桩的桩径尺寸及嵌岩深度对桩基承载特性的影响,采用室内模型试验方法,通过室内3组(9根)模型试桩对其进行了研究与分析,内容包括桩径大小及嵌岩深度对深嵌岩桩基承载力的影响、嵌岩深度的变化对轴力传递的影响以及桩径尺寸及嵌岩深度效应对桩侧阻力、桩端阻力的影响等。研究结果表明:增大桩径和增加嵌岩深度对提高嵌岩桩基的极限承载力都是可行的,且增大桩径比增加嵌岩深度更为有利;从桩身轴力传递来看,随着嵌岩深度的增加,桩身轴力的分布主要集中在桩身上部;从桩侧阻力分布形态来看,桩侧阻力也主要分布在桩身的上部区域。对小直径桩基(D=50 mm)而言,随着嵌岩深度的增加,桩顶承受荷载的增大,桩身上部的极限侧摩阻力也随之增大;而对大直径桩基(D=90 mm)而言,桩侧摩阻力随桩径的增加而反而有所减小;从桩端阻力大小来看,在极限荷载作用下,桩基嵌岩深度越深、桩径越大,桩端阻力变化越小。  相似文献   

9.
屈希峰  陈海桦 《四川建筑》2008,28(1):162-163
结合郑西客运专线试桩的测试,采用静载试验和钢筋计测试联合确定桩基承载力,对十余根超长灌注桩进行了测试.试验要求提供桩基的极限承载力及桩侧摩阻力分布.灌桩前,在钢筋笼的主筋上预装钢筋计,静载实验测试中得到钢筋计的读数变化并推求整个桩身侧摩阻力,通过桩身侧摩阻力计算桩的承载力,并与静载试验得到的结果进行比较,为桩基验收提供依据.  相似文献   

10.
基坑开挖卸荷会导致开挖段桩侧摩阻力缺失以及坑底桩周土围压减小,削弱桩基承载力。针对桩周土体开挖卸荷条件下的单桩承载力特性进行室内模型试验研究,通过模拟地面试桩和坑底试桩的竖向静载模型试验,分析单桩荷载传递过程,测试单桩极限承载力,研究桩周土体开挖卸荷对桩基承载力的影响。对比开挖卸荷前单桩的承载特性,开挖卸荷后桩顶及桩底沉降量均有增加,桩身轴力以及桩端阻力有所增大,模型单桩极限承载力下降。  相似文献   

11.
采用自平衡测试法对澜沧江特大桥二根人工挖孔嵌岩桩进行了静载荷试验,并采用钢筋计测试元件进行了桩身轴向应力测试,得到了桩极限承载力、桩端阻力以及桩侧摩阻力。综合分析了国内规范中嵌岩桩极限承载力理论计算的优缺点,将试桩极限承载力测试结果与现行规范极限承载力计算值进行了比较研究。研究表明规范计算结果均小于实测值,部分不计嵌岩段侧摩阻力的规范计算值过于保守。  相似文献   

12.
以沉降控制标准为原则来确定后压浆灌注桩的承载力有着重要的实际意义。基于石首长江公路大桥工程开展的6根大直径钻孔灌注桩现场静载试验,通过对比分析桩端桩侧组合压浆桩压浆前后的试验结果,研究了组合后压浆对深厚细砂层钻孔灌注桩承载变形性状的影响,在此基础上通过统计得出了在不同桩顶沉降条件下桩端阻力增强系数、桩侧阻力增强系数的取值范围,并给出了一种基于沉降控制标准的组合后压浆桩承载力设计方法,最后通过工程实例验证了该设计方法的合理性。结果表明,组合后压浆条件下的深厚细砂层钻孔灌注桩承载变形性能显著提升,且承载力提高幅度随着桩顶沉降的增加逐渐增大;组合后压浆桩加载至极限状态时,其极限承载力至少提高66%,且能有效地控制桩基沉降量;同时组合压浆后能有效地改善桩端支承性能与桩侧受力特性,显著提高桩端阻力和桩侧摩阻力,并对桩基的荷载传递特性产生明显影响。此外,设计计算方法能较好地给出组合后压浆桩荷载沉降关系的范围,可保守地将计算结果的下限作为工程设计使用。  相似文献   

13.
深基坑开挖会改变桩周土的应力状态,影响抗拔桩的承载力。通过离心机模型试验,研究了超深开挖对抗拔桩承载力的影响。采用考虑基底土超固结效应影响的有限元数值模拟分析方法,对离心机试验进行了计算分析,研究超深开挖对抗拔桩承载力影响的内在机理。研究结果表明:坑内土体卸荷,桩侧土体有效应力降低,抗拔桩承载力下降;受基底土超固结效应的影响,桩侧土静止土压力系数要大于正常固结状态,桩侧极限摩阻力与抗拔桩承载力大于正常固结状态;不考虑基坑开挖对桩周土应力水平的影响,以覆土条件下的承载力做为设计取值,偏于不安全;考虑基坑开挖对桩周土应力水平的影响,但不考虑基底土的超固结特性,抗拔桩承载力的取值偏于保守。  相似文献   

14.
超长大直径桩压浆后的承载性能研究   总被引:4,自引:0,他引:4       下载免费PDF全文
苏通大桥为取得可靠的工艺参数和设计参数,共进行了4次试桩试验,其中包括7根压浆前后对比桩。根据自平衡静载测试结果,桩端压浆不仅可提高桩端阻力,还可改善桩周土和桩土接触面的性质,使桩周摩阻力也得到提高。苏通大桥试桩经过压浆,总侧阻提高幅度为12.39%~52.87%,端阻提高1.46~6.21倍。侧阻力增量对桩极限承载力的贡献为56%~88%。  相似文献   

15.
昔格达泥岩中后压浆冲孔灌注桩承载力研究   总被引:1,自引:0,他引:1  
以第四系—冰期昔格达组泥岩对桥梁基础沉降不利影响分析为基础,通过对不压浆和后压浆冲孔灌注桩承载力、桩身轴向力、侧摩阻力和桩端阻力等内容的试验及测试,研究了置于昔格达泥岩层中桩的承载力大小、桩身轴向力和桩侧摩阻力的分布规律以及对承载力的贡献程度,分析了压浆处理对桩基工程特性的作用效果,得到了在此地层中冲孔灌注桩无论压浆与否均呈现摩擦桩的特点和压浆处理后承载力可提高近50%,为四川地区昔格达组泥岩中的冲孔灌注桩基的勘察、设计、检验以及压浆技术对减少沉降的应用提供了参考。  相似文献   

16.
 目前,国内外缺乏通过现场试验对薄壁筒桩荷载传递特性方面的研究,关于筒桩加固滩涂土地基的研究也较少。以温州浅滩一期半岛起步区首期1#地块为工程背景,进行现场荷载试验,以现场实测数据分析筒桩荷载传递特性。研究结果表明:在最大荷载作用下,较长的筒桩表现为端承摩擦型桩,桩侧摩阻力比约为75%,较短的筒桩表现为纯摩擦型桩,通过增加桩长、桩径可以提高筒桩竖向承载力;该类地区适合建5层以内工业厂房;桩身轴力自上向下逐渐发挥,桩身上部与下部土层摩阻力异步发挥;当上部土层达到极限侧摩阻力时,随着荷载的增加,出现侧阻软化现象,内侧摩阻力沿桩身自下向上逐渐发挥,为外侧摩阻力的20%~25%。采用簿壁筒桩加固滩涂土地基时,应考虑土芯内侧摩阻力对承载力的贡献。  相似文献   

17.
对灌注桩试桩分别进行了高应变冲击试桩试验和单桩轴向抗压静载试验,并对动静载试验的结果进行了对比分析。结果表明:试桩静载试验荷载-沉降曲线呈缓变型,桩侧摩阻力先于桩端阻力发挥,且桩端阻力随桩端位移的增加表现出硬化特性; 桩侧各土层达到极限摩阻力所需的桩土相对位移差异较大,且摩阻力随相对位移的增大分别呈理想弹塑性、双曲线型和软化模型变化; 桩端持力层强度越高,冲击试验实测桩底速度信号负向反射越显著; 桩端持力层强度越低,实测桩底速度信号正向反射越显著; 高应变拟合分析的承载力普遍低于静载试验,而拟合分析的桩顶位移远小于静载试验单桩极限承载力对应的桩顶位移; 极限端阻力随桩岩阻抗比的增大而增大,且桩端持力层存在有效阻抗面积; 所得结论对于提高拟合分析土参数及单桩极限承载力的计算精度和可靠性具有重要意义。  相似文献   

18.
由O-cell试桩结果确定整桩的性能   总被引:2,自引:0,他引:2  
提出了一个根据O-cell试桩结果确定整桩性能的途径,包括基本方法、步骤及必须的资料。以某公路大桥的O-cell试桩为例,采用本文所提出的途径确定出了桩阻力参数、相应整桩的荷载沉降曲线及极限承载力。验证了桩侧阻力与接触面两侧切向位移差之间关系可以用双曲线表示。将按本文提出的方法和现有其他四种方法确定的整桩荷载沉降曲线做了比较,并对各种确定整桩荷载沉降曲线方法的可靠性和适用性做了评价。此外,将按本文给出的整桩荷载沉降曲线和按流行公式确定的整桩极限承载力做了比较,指出了流行公式低估了整桩极限承载力,并对流行公式提出了一个修改建议。强调了,只有按某种有根据的方法确定出完整的整桩荷载沉降曲线,才能由O-cell试桩结果可靠地确定出整桩的极限承载力。  相似文献   

19.
施工因素对钻孔灌注桩受力性状的影响   总被引:2,自引:0,他引:2  
由于摩擦型钻孔灌注桩承载变形机理的复杂性,影响其承载性能的因素也是多方面的。通过对冲孔灌注桩和旋挖灌注桩的桩顶、桩端沉降量的静载试验资料及桩身应力应变测试资料的分析,揭示了不同施工工艺在不同荷载水平下桩的受力性状差异,并就影响桩侧摩阻力的因素进行了深入探讨。分析表明,施工造成的桩周土的性质,桩土相对位移,桩端沉渣,成孔时间,护壁清孔方式等因素的不同均会对单桩极限承载力产生重要影响。如果施工工艺选择不合理,单桩极限承载力会受到很大影响。  相似文献   

20.
基于无锡江海西路快速路工程开展的4个标段场地8根试桩静载试验,通过对比未压浆桩与压浆桩实测结果,研究黏性土层中桩端后压浆对桩基承载变形性状、桩端阻力及桩侧阻力发挥性状的影响。结果表明:桩端后压浆技术可显著提高桩基承载性能,并对提高桩基成桩质量的稳定性具有很好的效果;桩端压力浆液在桩端形成水泥结石体,有效地改善了桩端沉渣问题,显著增强了桩端承载变形性能与支承刚度;桩端后压浆可提高极限桩侧摩阻力发挥水平,使得压浆桩极限侧摩阻力要大于未压浆桩,从而提高桩基承载性能发挥的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号