首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In today's competitive scenario of increasingly faster deliveries and smaller order sizes, material-handling providers are progressively developing new solutions. A recent, automated material-handling technology for unit load storage and retrieval consists of an autonomous vehicle storage and retrieval system (AVS/RS). The present paper presents an analytical model to estimate the performances (the transaction cycle time and waiting times) of AVS/RS for product tote movement. The model is based on an open queuing network approach. The model effectiveness in performance estimation is validated through simulation.  相似文献   

2.
A computationally efficient cycle time model for conceptualizing autonomous vehicle storage and retrieval systems and comparing their performance with crane-based automated storage and retrieval systems is presented. The model is based on an iterative computational scheme exploiting random storage assumptions and queuing model approximations. Relative to earlier models, the procedure scales up efficiently for large problems thereby enabling more extensive search of a design solution space. Simulation based validation studies suggest that model accuracy is adequate for system conceptualization. The procedure is demonstrated using realistically sized sample problems.  相似文献   

3.
This paper addresses the deadlock control problem for the autonomous vehicle storage and retrieval system (AVS/RS). For an AVS/RS with several autonomous vehicles running in bi-direction, deadlock control is one of the key issues in the implementation of AVS/RS. The cycle-deadlock is the main type of deadlock in AVS/RS. In the paper, the dynamic model of AVS/RS is investigated by using coloured timed Petri nets (CTPN). Based on the CTPN model, a route digraph is built to detect cycle-deadlock in AVS/RS with digraph tools; the necessary and sufficient conditions of deadlock-free are established. Moreover deadlock-free control policies are proposed, the critical state in deadlock free is also identified and FCFS policy is applied to solve it. Finally, a case study is given to validate the policies.  相似文献   

4.
The objective of this study is to propose analytical travel time models for aisle changing shuttle carriers, which are capable of travelling in the horizontal and in the cross-aisle directions. The expressions for the single and dual command travel times have been determined assuming uniform distributed storage locations and the probability theory. A simulation model has been applied for the performance analysis of the proposed analytical models. The proposed models enable the calculation of the expected travel times for single and dual command cycles of the aisle changing shuttle carriers, from which the performance can be evaluated.  相似文献   

5.
Autonomous vehicle storage and retrieval systems use vehicles that move horizontally along rails within the storage racks, while vertical movements are provided by lifts. The solution proposed in this paper addresses a particular system configuration that works with multiple deep storage lanes that are widely used in the food and beverage industry, characterised by large volumes of products of limited variety. The generic deep lane is single item, i.e. one stock keeping unit, and single batch, i.e. one production lot, thereby affecting the performance of the system in terms of storage capacity utilisation and throughput. Determining the number and depth of the lanes is crucial to aid the design and control of such a storage system. The aim of this paper was to support the design of AVS/RSs though a set of original analytic models for the determination of the travelled distance and time for single-command and dual-command cycles given alternative layout configurations. The models are validated by simulation and exemplified with a real-warehousing case study. The paper presents useful guidelines for the configuration of the system layout including the determination of the optimal shape ratio and the length of the lanes.  相似文献   

6.
In this paper, we consider a robotic automated storage and retrieval system (AS/RS) where a Cartesian robot picks and palletises items onto a mixed pallet for any order. This robotic AS/RS not only retrieves orders in an optimal sequence, but also creates an optimal store ready pallet of any order. Adapting the Travelling Salesman Problem to warehousing, the decision to be made includes finding the optimal sequence of orders, and optimal sequence of items inside each order, that jointly minimise total travel times. In the first phase, as a control problem, we develop an avoidance strategy for the robot (or automatic stacker crane) movement sequence. This approach detects the collision occurrence causing unsafe handling of hazardous items and prevents the occurrence of it by a collision-free robot movement sequence. Due to the complexity of the problem, the second phase is attacked by a Cross-Entropy (CE) method. To evaluate the performance of the CE method, a computational analysis is performed over various test problems. The results obtained from the CE method are compared to those of the optimal solutions obtained using CPLEX. The results indicate high performance of the solution procedure to solve the sequencing problem of robotic AS/RSs.  相似文献   

7.
Automated storage and retrieval systems (AS/RS) are used in high velocity distribution centres to provide accurate and fast order processing. While almost every industrial system is comprised of many aisles, most of the academic research on the operational aspects of AS/RS is devoted to single-aisle systems, probably due to the broadly accepted hypothesis proposing that an m aisles system can be modelled as m 1-aisle independent systems. In this article, we present two multi-aisles sequencing approaches and evaluate their performance when all the aisles are managed independently first, and then in a global manner. Computational experiments conducted on a multi-aisle AS/RS simulation model clearly demonstrate that a multi-aisle system cannot be accurately represented by multiple single-aisle systems. The numerical results demonstrate that, when dealing with random storage, globally sequencing multi-aisle AS/RS leads to makespan reductions ranging from 14 to 29% for 2- and 3-aisle systems, respectively.  相似文献   

8.
Automated Storage and Retrieval Systems (AS/RS) are warehousing systems that use mechanised devices to accomplish the repetitive tasks of storing and retrieving parts in racks. Since these systems represent a significant investment and considerable operating costs, their use must be as efficient as possible. AS/RS performance is the result of the interaction of many complex and stochastic subsystems. This reality creates a need for robust and efficient evaluation models. This article complements previous surveys on AS/RS by focusing on the particular research question addressed by each work and the associated assumptions used for the various models designed for evaluating AS/RS. Dynamic models based on simulation dominate the most recent literature; however, static approaches based on travel-time modelling have strongly contributed to the study of AS/RS. This review includes dynamic – simulation-based – models, but considers also steady-state (travel-time-based) models. We believe that this review may be of great help to researchers and industrial users in their search for the best modelling approach for a specific problem.  相似文献   

9.
The continuing need for high-throughput Automated Storage and Retrieval Systems (AS/RS) has lead to the introduction of storage/retrieval machines that can carry more than one unit-load. However, this technology involves a large capital investment so careful operating methods are desired to make the most of its capabilities. In this paper, we study a shift-based sequencing problem for twin-shuttle AS/RS, where depletion (retrieval operations) and replenishment (storage operations) of items occur over different shifts. For example, certain warehouses or distribution depots deplete their items in stock during morning shifts and replenish during later shifts. We show that this problem can be transformed into the minimum-cost perfect matching problem and present an efficient polynomial-time optimum method that can achieve a large throughput gain over other methods. We also provide average-case and lower bound analyses for this problem.  相似文献   

10.
Automated Storage and Retrieval System (AS/RS) performance highly depends on the characteristics of the mechanical equipment. However, once the system has been physically implemented, achieving its maximum efficiency depends on the way the system is operated. This paper shows that request sequencing (i.e. planning the order in which storage and retrieval requests are performed) is of paramount importance in AS/RS performance. This paper reviews and adapts the most popular storage and sequencing policies to dynamic contexts, and then it proposes a ‘sequencing mathematical model’ (SMM) to simultaneously solve the sequencing and storage location problems. Extensive computational results based on a thorough simulation experiment plan confirm that performing the requests in the right sequence can have a positive impact on AS/RS performance. Our results show that the proposed SMM regularly outperforms other methods. When used in a dynamic context, the proposed SMM may yield up to a 25% reduction in average travel-time compared to the situation where a no-sequencing method is applied.  相似文献   

11.
In this paper, a simulation-based regression analysis for the rack configuration of an autonomous vehicle storage and retrieval system (AVS/RS) is presented. The aim of this study is to develop mathematical functions for the rack configuration of an AVS/RS that reflects the relationship between the outputs (responses) and the input variables (factors) of the system under various scenarios. In the regression model, we consider five outputs: the average cycle time of storage and retrieval transactions, the average waiting time for vehicle transactions, the average waiting time of vehicles (transactions) for the lift, the average utilisation of vehicles and the average utilisation of the lifts. The input variables are the number of tiers, aisles and bays that determine the size of the warehouse. Thirty regression models are developed for six warehouse scenarios. The simulation model of the system is developed using ARENA 12.0 commercial software and the statistical analyses are completed using MINITAB statistical software. Two different approaches are used to fit the regression functions–stepwise regression and the best subsets. After obtaining the regression functions, we optimise them using the LINGO software. We apply the approach to a company that uses AVS/RS in France.  相似文献   

12.
In this paper, we present a method for performance evaluation of autonomous vehicle storage and retrieval systems (AVS/RSs) with tier-captive single-aisle vehicles. A discrete-time open queueing network approach is applied. The data obtained from the evaluation of the lift and vehicle movements can be used directly as input for the general discrete service time distributions of the queueing network. Furthermore, the approach allows for the computation of the retrieval transaction time distribution as well as of the distribution of the number of transactions waiting to be stored. Consequently, not only expected values and variances but also quantiles of the performance measures can be obtained. Comparison to discrete-event simulation quantifies approximation errors resulting from the decomposition approach in the discrete-time domain. Moreover, the errors obtained by the discrete-time approach are compared to the errors obtained using a continuous-time open queueing network approach. Finally, it will be outlined how the model can be used for designing AVS/RSs according to given system requirements, such as storage capacity, throughput, height and length of the system as well as the 95% quantile of the retrieval transaction time.  相似文献   

13.
We consider an automated storage/retrieval system in which cargo moves between the storage/retrieval machines and the system entrance/exit stations through a single automated vehicle loop. Past studies indicated that the cargo waiting time in the loop is affected by the dispatching rules, which govern the sequence of the cargo to be handled. In this paper, we show that the loop configuration, which has received little research attention, also has a big impact on the cargo waiting time. When the first-come-first-served dispatching rule is used, we derive the relationship between the number of stations and the ratio of the average cargo retrieval time to the average cargo storage time. When the first-encountered-first-served dispatching rule is used, we show that even the arrangement of the input channel and the output channel of a station can have significant impact on the cargo waiting time. Furthermore, we derive a formula for the vehicle visit rate for each station under heavy traffic conditions. This formula helps to explain the phenomenon that the waiting times at different stations can be very different even when the loop is symmetrically designed and the cargo arrival rates to the stations are similar. In addition to analytical models, we use simulations to evaluate the performance of different loop configurations. Our research suggests that a substantial improvement can be achieved by making proper adjustments to the loop configuration.  相似文献   

14.
Autonomous vehicle storage and retrieval systems utilize rail-guided vehicles moving in rectilinear paths within and between the aisles of unit load storage racks. Vertical vehicle movement is provided by lifts installed at fixed locations along the rack periphery. As an alternative to traditional automated storage and retrieval systems, autonomous vehicle systems enable users to match vehicle fleet size and the number of lifts to the level of transactions demand in a storage system. Analytical conceptualizing tools based on the features of autonomous vehicle systems are proposed for modelling expected performance as a function of key system attributes including storage capacity, rack configuration and fleet size. The models are demonstrated for a sample problem and compared with analytical conceptualizing tools used for automated storage and retrieval systems.  相似文献   

15.
Technological developments in the global supply chain have changed processes in warehousing. This reflects in short response time in handling the orders, which has a consequence on high automation degree in warehousing. An important part of automated warehouses is presented by shuttle-based storage and retrieval systems (SBS/RS), which are used in practice when demand for the throughput capacity is high. In this paper, analytical travel time model for the computation of cycle times for double-deep SBS/RS is presented. The advantage of the double-deep SBS/RS is that fewer aisles are needed, which results in a more efficient use of floor space. The proposed model considers the real operating characteristics of the elevators lifting table and the shuttle carrier with the condition of rearranging blocking totes to the nearest free storage location during the retrieval process of the shuttle carrier. Assuming uniform distributed storage locations and the probability theory, the expressions for the single and dual-command cycle of the elevators lifting table and the shuttle carrier have been determined. The proposed model enables the calculation of the expected cycle time for single- and dual-command cycles, from which the performance of the double-deep SBS/RS can be evaluated. The analysis show that regarding examined type of the double-deep SBS/RS, the results of the proposed analytical travel time model demonstrate good performances for evaluating double-deep SBS/RS.  相似文献   

16.
Compact, multi-deep (3D) automated storage and retrieval systems (AS/RS) are becoming increasingly popular for storing products. We study such a system where a storage and retrieval (S/R) machine takes care of movements in the horizontal and vertical directions of the rack, and an orthogonal conveying mechanism takes care of the depth movement. An important question is how to layout such systems under different storage policies to minimize the expected cycle time. We derive the expected single-command cycle time under the full-turnover-based storage policy and propose a model to determine the optimal rack dimensions by minimizing this cycle time. We simplify the model, and analytically determine optimal rack dimensions for any given rack capacity and ABC curve skewness. A significant cycle time reduction can be obtained compared with the random storage policy. We illustrate the findings of the study by applying them in a practical example.  相似文献   

17.
Energy efficiency has become a primary goal to be pursued for sustainable logistics. In automated storage and retrieval systems this leads to revise the traditional control policies aimed at picking time minimisation and to pay more attention to rack configuration, which has been not a research concern from the time-based perspective. Proper models for energy calculation should be developed by introducing new factors neglected in time analysis, such as the weight of unit loads and the differentiation of shifts along the horizontal and vertical axis as regard energy requirements, due to different contribution of gravity, inertia and friction. In this study, a classification of racks based on system height is proposed in order to select the proper crane specifications needed to compute the torque to be overcome by motors to serve a given location within a rack. An overall optimisation model based on Constraint Programming hybridised with Large Neighborhood Search is developed, allowing the joint application of the best control policies for storage assignment and sequencing both for time and energy-based optimisation, as well as the introduction of multiple weight unit loads and energy recovery. Simulations analysis is performed in order to assess the impact of the rack shape on energy saving. Results show how, regardless the demand curve and the optimisation objective, the best performances in terms of energy efficiency are reached by the intermediate height rack shapes, while the lower ones outperform when considering travel time performance.  相似文献   

18.
Flow-rack is a multi-deep rack containing multi-row and multi-column slope bins. Traditionally, bins slope in the same direction in a flow-rack to make unit-loads slide from the storage face to the retrieval face driven by gravity, which cause unit-loads are stored to the storage face and retrieved from the retrieval face. In this paper, a bi-directional flow-rack (BFR) is designed, in which bins in adjacent columns slope to opposite directions. In each side of a BFR, unit-loads are stored in half of the bins and retrieved from the other half. Therefore, dual-command (DC) operations could be simultaneously performed on both faces and blocking unit-loads are re-stored to available bins on the same face directly. We develop a travel time model for BFR systems, which provides the throughput baseline for different configurations of BFR. A DC operation generation method is introduced for BFR systems. Simulation experiments are conducted to evaluate the effectiveness of the BFR travel time model, to compare the throughput performance between BFR and SFR systems and to evaluate the performance of the proposed DC operation generation method.  相似文献   

19.
Sequencing of storages and retrievals is an important topic in the automated storage and retrieval system (AS/RS), which largely influences the throughput performance and the operational cost of an AS/RS. In this paper, the problem of sequencing the storages and retrievals in a flow-rack AS/RS with duration-of-stay storage policy is analysed and a two-step heuristic called the grouping-matching method is proposed for minimising the total travel time of operations. The proposed grouping-matching method assigns unit-loads into groups in the grouping step and matches groups and bins of flow rack in the matching step. Two grouping heuristics are designed for the grouping step. The matching subproblem is formulated as an assignment to be solved. Simulation experiments are conducted to evaluate the effectiveness and efficiency of the grouping-matching method and the two grouping heuristics used for the grouping subproblem.  相似文献   

20.
Motivated by recent technological advances in mobile robotics, this paper explores a novel approach for warehouse order picking. In particular, this work considers two types of commercially available mobile robots – one that can grasp items from a shelf (a picker) and another (a transporter) that can quickly deliver all items from the pick list to the packing station. A new vehicle routing problem is defined which seeks to minimise the time to deliver all items from a pick list to the packing station, a problem termed the pick, place, and transport vehicle routing problem. A mixed integer linear programming formulation is developed to answer three related research questions. First, what combination of picker and transport robots is required to obtain performance exceeding traditional human-based picking operations? Second, how should the composition of the robot fleet be altered to affect the greatest performance improvements? Finally, what are the impacts of warehouse layout designs when coordinated mobile robots are deployed? An extensive numerical analysis reveals that, (1) increasing the number of cross aisles decreases system performance; (2) centrally located packing stations improve system performance; and (3) the average distance from each pick location to the packing station and the average distance between pick locations are effective metrics for identifying specific fleet modifications that are likely to yield system improvements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号