首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《国际生产研究杂志》2012,50(1):277-292
A process planning (PP) problem is defined as to determine a set of operation-methods (machine, tool, and set-up configuration) that can convert the given stock to the designed part. Essentially, the PP problem involves the simultaneous decision making of two tasks: operation-method selection and sequencing. This is a combinatorial optimisation problem and it is difficult to find the best solution in a reasonable amount of time. In this article, an optimisation approach based on particle swarm optimisation (PSO) is proposed to solve the PP problem. Due to the characteristic of discrete process planning solution space and the continuous nature of the original PSO, a novel solution representation scheme is introduced for the application of PSO in solving the PP problem. Moreover, two kinds of local search algorithms are incorporated and interweaved with PSO evolution to improve the best solution in each generation. The numerical experiments and analysis have demonstrated that the proposed algorithm is capable of gaining a good quality solution in an efficient way.  相似文献   

2.
Process planning and production scheduling play important roles in manufacturing systems. In this paper we present a mixed integer linear programming (MILP) scheduling model, that is to say a slot-based multi-objective multi-product, that readily accounts for sequence-dependent preparation times (transition and set up times or machine changeover time). The proposed scheduling model becomes computationally expensive to solve for long time horizons. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimisation problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for this, the hybrid multi-objective simulated annealing algorithm (MOHSA) is proposed by fully utilising the capability of the exploration search and fast convergence. Two numerical experiments have been performed to demonstrate the effectiveness and robustness of the proposed algorithm.  相似文献   

3.
Effective performance of modern manufacturing systems requires integrating process planning and scheduling more tightly, which is consistently challenged by the intrinsic interrelation and intractability of these two problems. Traditionally, these two problems are treated sequentially or separately. Integration of process planning and scheduling (IPPS) provides a valuable approach to improve system performance. However, IPPS is more complex than job shop scheduling or process planning. IPPS is strongly NP-hard in that, compared to an NP-hard job shop scheduling problem with a determined process plan, the process plan for each job in IPPS is also to be optimised. So, an imperialist competitive algorithm (ICA) is proposed to address the IPPS problem with an objective of makespan minimisation. An extended operation-based representation scheme is presented to include information on various flexibilities of process planning with respect to determined job shop scheduling. The main steps of the proposed ICA, including empires construction, assimilation, imperialistic competition, revolution and elimination, are elaborated using an illustrative example. Performance of the proposed ICA was evaluated on four sets of experiments taken from the literature. Computational results of the ICA were compared with that of some existing algorithms developed for IPPS, which validates the efficiency and effectiveness of the ICA in solving the IPPS problem.  相似文献   

4.
Remanufacturing has been widely studied for its potential to achieve sustainable production in recent years. In the literature of remanufacturing research, process planning and scheduling are typically treated as two independent parts. However, these two parts are in fact interrelated and often interact with each other. Doing process planning without considering scheduling related factors can easily introduce contradictions or even infeasible solutions. In this work, we propose a mathematical model of integrated process planning and scheduling for remanufacturing (IPPSR), which simultaneously considers the process planning and scheduling problems. An effective hybrid multi-objective evolutionary algorithm (HMEA) is presented to solve the proposed IPPSR. For the HMEA, a multidimensional encoding operator is designed to get a high-quality initial population. A multidimensional crossover operator and a multidimensional mutation operator are also proposed to improve the convergence speed of the algorithm and fully exploit the solution space. Finally, a specific legalising method is used to ‘legalise’ possible infeasible solutions generated by the initialisation method and mutation operator. Extensive computational experiments carried out to compare the HMEA with some well-known algorithms confirm that the proposed HMEA is able to obtain more and better Pareto solutions for IPPSR.  相似文献   

5.
Sustainable and efficient food supply chain has become an essential component of one’s life. The model proposed in this paper is deeply linked to people's quality of life as a result of which there is a large incentive to fulfil customer demands through it. This proposed model can enhance food quality by making the best possible food quality accessible to customers, construct a sustainable logistics system considering its environmental impact and ensure the customer demand to be fulfilled as fast as possible. In this paper, an extended model is examined that builds a unified planning problem for efficient food logistics operations where four important objectives are viewed: minimising the total expense of the system, maximising the average food quality along with the minimisation of the amount of CO2 emissions in transportation along with production and total weighted delivery lead time minimisation. A four objective mixed integer linear programming model for intelligent food logistics system is developed in the paper. The optimisation of the formulated mathematical model is proposed using a modified multi-objective particle swarm optimisation algorithm with multiple social structures: MO-GLNPSO (Multi-Objective Global Local Near-Neighbour Particle Swarm Optimisation). Computational results of a case study on a given dataset as well as on multiple small, medium and large-scale datasets followed by sensitivity analysis show the potency and effectiveness of the introduced method. Lastly, there has been a scope for future study displayed which would lead to the further progress of these types of models.  相似文献   

6.
In job-shop scheduling, the importance of set-up issues is well known and has been considered in many solution approaches. However, in integrated process planning and scheduling (IPPS) involving flexible process plans, the set-up times are often ignored, or absorbed into processing times in IPPS domain, with the purpose to reduce the complexity. This is based on the assumption that set-up times are sequence-independent, or short enough to be ignored compared to processing times. However, it is not uncommon to encounter sequence-dependent set-up times (SDSTs) in practical production. This paper conducts a detailed investigation on the impact of SDSTs on the practical performance of the schedule: a comparative study is made for different cases where set-up times are (1) separately considered, (2) absorbed into processing times, or (3) totally ignored. An enhanced version of ant colony optimisation (E-ACO) algorithm is used to solve the IPPS problem, with the objective to minimise the total makespan. The following four types of set-up issues are considered: part loading/unloading, fixture preparation, tool switching and material transportation. Situations with various set-up time lengths have been studied and compared. A special case of IPPS problem involving a large number of identical jobs has been specifically studied and discussed. The results have shown that, set-up times should be carefully dealt with under different circumstances.  相似文献   

7.
Rui Zhang  Cheng Wu 《工程优选》2013,45(7):641-670
An optimization algorithm based on the ‘divide-and-conquer’ methodology is proposed for solving large job shop scheduling problems with the objective of minimizing total weighted tardiness. The algorithm adopts a non-iterative framework. It first searches for a promising decomposition policy for the operation set by using a simulated annealing procedure in which the solutions are evaluated with reference to the upper bound and the lower bound of the final objective value. Subproblems are then constructed according to the output decomposition policy and each subproblem is related to a subset of operations from the original operation set. Subsequently, all these subproblems are sequentially solved by a particle swarm optimization algorithm, which leads directly to a feasible solution to the original large-scale scheduling problem. Numerical computational experiments are carried out for both randomly generated test problems and the real-world production data from a large speed-reducer factory in China. Results show that the proposed algorithm can achieve satisfactory solution quality within reasonable computational time for large-scale job shop scheduling problems.  相似文献   

8.
This paper considers the cell formation (CF) problem in which parts have alternative process routings and the number of machine cells is not known a priori. Very few studies address these two practical issues at the same time. This paper proposes an automatic clustering approach based on a hybrid particle swarm optimisation (PSO) algorithm that can automatically evolve the number and cluster centres of machine cells for a generalised CF problem. In the proposed approach, a solution representation, comprising an integer number and a set of real numbers, is adopted to encode the number of cells and machine cluster centres, respectively. Besides, a discrete PSO algorithm is utilised to search for the number of machine cells, and a continuous PSO algorithm is employed to perform machine clustering. Effectiveness of the proposed approach has been demonstrated for test problems selected from the literature and those generated in this study. The experimental results indicate that the proposed approach is capable of solving the generalised machine CF problem without predetermination of the number of cells.  相似文献   

9.
This paper describes a relational database system for semi-generative process planning for sheet metal parts that emulates expert system capabilities. The system integrates a feature-based relational database for the parts, a forward chaining rule-based strategy for machine selection, both global and feature-specific execution of the rules and a graph theoretic cost optimization model for optimal process plan selection. This system, which is currently being developed for a sheet metal fabrication company, suggests that, using the experience of shopfloor personnel, an efficient integration of feature-based process planning and expert system strategies can be accomplished.  相似文献   

10.
Integrated process planning and scheduling (IPPS) is a manufacturing strategy that considers process planning and scheduling as an integrated function rather than two separated functions performed sequentially. In this paper, we propose a new heuristic to IPPS problem for reconfigurable manufacturing systems (RMS). An RMS consists mainly of reconfigurable machine tools (RMTs), each with multiple configurations, and can perform different operations with different capacities. The proposed heuristic takes into account the multi-configuration nature of machines to integrate both process planning and scheduling. To illustrate the applicability and the efficiency of the proposed heuristic, a numerical example is presented where the heuristic is compared to a classical sequential process planning and scheduling strategy using a discrete-event simulation framework. The results show an advantage of the proposed heuristic over the sequential process planning and scheduling strategy.  相似文献   

11.
Fatih Camci 《工程优选》2013,45(2):119-136
Recent technical advances in condition-based maintenance technology have made it possible to not only diagnose existing failures, but also forecast future failures, which is called prognostics. A common method of maintenance scheduling in condition-based maintenance is to apply thresholds to prognostics information, which is not appropriate for systems consisting of multiple serially connected machinery. Maintenance scheduling is defined as a binary optimization problem and has been solved with a genetic algorithm. In this article, various binary particle swarm optimization methods are analysed and compared with each other and a genetic algorithm on a maintenance-scheduling problem for condition-based maintenance systems using prognostics information. The trade-off between maintenance and failure is quantified as the risk to be minimized. The forecasted failure probability of serially connected machinery is utilized in the analysis of the whole system. In addition to the comparison of a genetic algorithm and binary particle swarm optimization methods, a new binary particle swarm optimization that combines the good sides of two binary particle swarm optimizations is presented.  相似文献   

12.
Cross-docking is a very useful logistics technique that can substantially reduce distribution costs and improve customer satisfaction. A key problem in its success is truck scheduling, namely, decision on assignment and docking sequence of inbound/outbound trucks to receiving/shipping dock doors. This paper focuses on the problem with the requirement of unloading/loading products in a given order, which is very common in many industries, but is less concerned by existing researches. An integer programming model is established to minimise the makespan. An improved particle swarm optimisation (ωc-PSO) algorithm is proposed for solving it. In the algorithm, a cosine decreasing strategy of inertia weight is designed to dynamically balance global and local search. A repair strategy is put forward for continuous search in the feasible solution space and a crossover strategy is presented to prevent the algorithm from falling into local optimum. After algorithm parameters are tuned using Taguchi method, computational experiments are conducted on different problem scales to evaluate ωc-PSO against genetic algorithm, basic PSO and GLNPSO. The results show that ωc-PSO outperforms other three algorithms, especially when the number of dock doors, trucks and product types is great. Statistical tests show that the performance difference is statistically significant.  相似文献   

13.
This paper addresses preemption in just-in-time (JIT) single–machine-scheduling problem with unequal release times and allowable unforced machine idle time as realistic assumptions occur in the manufacturing environments aiming to minimise the total weighted earliness and tardiness costs. Delay in production systems is a vital item to be focussed to counteract lost sale and back order. Thus, JIT concept is targeted including the elements required such as machine preemption, machine idle time and unequal release times. We proposed a new mathematical model and as the problem is proven to be NP-hard, three meta-heuristic approaches namely hybrid particle swarm optimisation (HPSO), genetic algorithm and imperialist competitive algorithm are employed to solve the problem in larger sizes. In HPSO, cloud theory-based simulated annealing is employed with a certain probability to avoid being trapped in a local optimum. Taguchi method is applied to calibrate the parameters of the proposed algorithms. A number of numerical examples are solved to demonstrate the effectiveness of the proposed approach. The performance of the proposed algorithms is evaluated in terms of relative percent deviation and computational time where the computational results clarify better performance of HPSO than other algorithms in quality of solutions and computational time.  相似文献   

14.
This study compares the performance of four different metaheuristics for solving a constraint satisfaction scheduling problem of the outfitting process of shipbuilding. The ship outfitting process is often unorganised and chaotic due to the complex interactions between the stakeholders and the overall lack of sufficiently detailed planning. The examined methods are genetic algorithms (GA), simulated annealing (SA), genetic simulated annealing (GSA) and discrete particle swarm optimisation (PSO). Each of these methods relies on a list scheduling heuristic to transform the solution space into feasible schedules. Although the SA had the best performance for a medium-sized superstructure section, the GSA created the best schedules for engine room double-bottom sections, the most complex sections in terms of outfitting. The GA provided the best scalability in terms of computational time while only marginally sacrificing solution quality. The solution quality of the PSO was very poor in comparison with the other methods. All methods generated schedules with sufficiently high resource utilisation, approximately 95%. The findings from this work will be incorporated into a larger project with the aim of creating a tool which can automatically generate an outfitting planning for a vessel.  相似文献   

15.
The non-oriented two-dimensional bin packing problem (NO-2DBPP) deals with a set of integer sized rectangular pieces that are to be packed into identical square bins. The specific problem is to allocate the pieces to a minimum number of bins allowing the pieces to be rotated by 90° but without overlap. In this paper, an evolutionary particle swarm optimisation algorithm (EPSO) is proposed for solving the NO-2DBPP. Computational performance experiments of EPSO, simulating annealing (SA), genetic algorithm (GA) and unified tabu search (UTS) using published benchmark data were studied. Based on the results for packing 3000 rectangles, EPSO outperformed SA and GA. In addition; EPSO results were consistent with the results of UTS indicating that it is a promising algorithm for solving the NO-2DBPP.  相似文献   

16.
In this paper, we propose a closed-loop supply chain network configuration model and a solution methodology that aim to address several research gaps in the literature. The proposed solution methodology employs a novel metaheuristic algorithm, along with the popular gradient descent search method, to aid location-allocation and pricing-inventory decisions in a two-stage process. In the first stage, we use an improved version of the particle swarm optimisation (PSO) algorithm, which we call improved PSO (IPSO), to solve the location-allocation problem (LAP). The IPSO algorithm is developed by introducing mutation to avoid premature convergence and embedding an evolutionary game-based procedure known as replicator dynamics to increase the rate of convergence. The results obtained through the application of IPSO are used as input in the second stage to solve the inventory-pricing problem. In this stage, we use the gradient descent search method to determine the selling price of new products and the buy-back price of returned products, as well as inventory cycle times for both product types. Numerical evaluations undertaken using problem instances of different scales confirm that the proposed IPSO algorithm performs better than the comparable traditional PSO, simulated annealing (SA) and genetic algorithm (GA) methods.  相似文献   

17.
The integration of process planning and scheduling is considered as a critical component in manufacturing systems. In this paper, a multi-objective approach is used to solve the planning and scheduling problem. Three different objectives considered in this work are minimisation of makespan, machining cost and idle time of machines. To solve this integration problem, we propose an improved controlled elitist non-dominated sorting genetic algorithm (NSGA) to take into account the computational intractability of the problem. An illustrative example and five test cases have been taken to demonstrate the capability of the proposed model. The results confirm that the proposed multi-objective optimisation model gives optimal and robust solutions. A comparative study between proposed algorithm, controlled elitist NSGA and NSGA-II show that proposed algorithm significantly reduces scheduling objectives like makespan, cost and idle time, and is computationally more efficient.  相似文献   

18.
This paper deals with an integrated bi-objective optimisation problem for production scheduling and preventive maintenance in a single-machine context with sequence-dependent setup times. To model its increasing failure rate, the time to failure of the machine is subject to Weibull distribution. The two objectives are to minimise the total expected completion time of jobs and to minimise the maximum of expected times of failure of the machine at the same time. During the setup times, preventive maintenance activities are supposed to be performed simultaneously. Due to the assumption of non-preemptive job processing, three resolution policies are adapted to deal with the conflicts arising between job processing and maintenance activities. Two decisions are to be taken at the same time: find the permutation of jobs and determine when to perform the preventive maintenance. To solve this integrated problem, two well-known evolutionary genetic algorithms are compared to find an approximation of the Pareto-optimal front, in terms of standard multi-objective metrics. The results of extensive computational experiments show the promising performance of the adapted algorithms.  相似文献   

19.
This paper addresses a permutation flow-shop scheduling problem where there are a finite number of transporters to carry jobs from each machine to its subsequent machine. The problem is first formulated as a mixed-integer linear programme, and then two anarchic society optimisation (ASO) algorithms are developed to solve large-sized instances of the problem. The numerical experience shows that the ASO algorithms are considerably effective and efficient. Finally, a sensitivity analysis is carried out to study the performance of the manufacturing system versus the transportation times and the number of transporters.  相似文献   

20.
Comprehensive process planning is the key technology for linking design and the manufacturing process and is a rather complex and difficult task. Setup planning has a basic role in computer-aided process planning (CAPP) and significantly affects the overall cost and quality of machined parts. This paper presents a generative system and particle swarm optimisation algorithm (PSO) approach to the setup planning of a given part. The proposed approach and optimisation methodology analyses constraints such as the TAD (tool approach direction), the tolerance relation between features and feature precedence relations, to generate all possible process plans using the workshop resource database. Tolerance relation analysis has a significant impact on setup planning to obtain part accuracy. Based on technological constraints, the PSO algorithm approach, which adopts the feature-based representation, optimises the setup planning using cost indices. To avoid becoming trapped in local optima and to explore the search space extensively, several new operators have been developed to improve the particles’ movements, combined into a modified PSO algorithm. A practical case study is illustrated to demonstrate the effectiveness of the algorithm in optimising the setup planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号