首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
深埋隧洞TBM掘进微震实时监测与特征分析   总被引:10,自引:5,他引:5  
 针对深埋硬岩隧洞TBM掘进过程中开展微震实时监测存在的困难与不足,对现有微震监测技术进行优化与改进,并在锦屏II级水电站3#引水隧洞TBM施工洞段开展微震实时监测。监测结果表明:(1) TBM施工环境噪音复杂,但主要噪音特征明显,可通过建议的滤波方法有效滤除。(2) 围岩的微震活动和TBM掘进及掘进速率具有明显的关系,TBM掘进速率增加,围岩微震明显活跃;TBM掘进速率降低,围岩的微震活动明显降低;微震平静期发生在TBM检修期间,最活跃期发生在TBM检修后掘进4~6 h。(3) 一些岩爆发生前,微震事件和能量释放在空间上由随机离散状态变得相对集中,在时间上微震事件的数量和能量有一个迅速增加的趋势;视体积有突增趋势,能量指数有突然下降迹象。(4) 在深埋隧洞TBM掘进过程中进行微震实时监测,可以获得岩爆发生前的有效微震信息,获得岩爆发生前微震活动的演化特征与规律,为岩爆的发生提供较为准确的预警信息。因此,通过微震监测预测预报深埋隧洞TBM掘进过程中岩爆的发生是可行的。  相似文献   

2.
在分析钻爆法和TBM法开挖下围岩应力状态的基础上,基于锦屏二级水电站深埋隧洞微震监测数据,对比研究了钻爆法和TBM法开挖条件下深埋隧洞的微震特性及岩爆风险。结果表明:1钻爆法开挖引起的围岩应力集中距洞壁较远,形成的应力梯度较小;而TBM法开挖引起的围岩应力集中临近洞壁,形成的应力梯度较大。2钻爆法开挖时围岩应变能主要集中在爆破后数小时,尤其是在1 h内释放,而TBM法以连续的方式开挖卸载,剧烈的能量释放伴随着施工全过程。3TBM法开挖导致的事件震级及震源破裂尺度均比钻爆法开挖引起的大。4钻爆法开挖时,围岩积聚的应变能大多以岩体破裂的形式耗散,以岩爆形式显现的较少;而TBM法开挖时,围岩应变能常逐次释放,导致事件频繁发生,而且部分应变能以岩爆形式显现,一般地,同一小范围内常多次发生轻微岩爆,高等级岩爆孕育过程中常伴有低等级岩爆,如中等岩爆发生前伴有轻微岩爆,强烈岩爆孕育过程中伴有轻微和(或)中等岩爆,以此类推。综合上述研究结果认为,在具有强岩爆风险的深埋隧洞中,就防治岩爆而言,钻爆法优于TBM法。  相似文献   

3.
为了研究深埋隧洞在双护盾TBM施工环境下的岩爆特征,以某公路隧道为例对微震监测成果进行了统计整理,并在此基础上分析了微震事件与掌子面位置、岩体完整性以及隧洞埋深等之间的相关关系,获取了该工程岩爆事件发生的规律。成果表明,在隧洞采用双护盾TBM开挖过程中岩爆事件并非主要集中在掌子面附近,岩爆存在一定的延迟性和超前性,岩爆发生与开挖过程的时间效应及距离范围存在一定规律。同时,岩爆的能量等级和发生频次与岩体结构及隧道埋深也存在关联性。深埋隧洞在双护盾TBM施工环境下的岩爆规律的研究对类似工程具有一定的借鉴意义。  相似文献   

4.
深埋隧洞岩爆孕育规律与机制:即时型岩爆   总被引:7,自引:5,他引:2  
论述深埋隧洞岩爆孕育过程的现场原位综合观测试验思路和方法,给出利用该方法观测到的岩爆孕育时空演化规律以及基于观测结果的关于岩爆孕育机制的认知成果。通过一系列现场深埋隧洞开挖过程中的多元信息综合观测试验,揭示深埋隧洞的即时型岩爆(隧洞开挖卸荷效应影响过程中的隧洞掌子面及其附近的围岩,开挖后几小时到几天内发生)的裂纹(萌生、扩展、张开和闭合过程)、变形、弹性波、声发射和微震时空演化规律及其在时空上的分布特征。通过对监测的微震信息进行矩张量分析,认识即时型岩爆中应变型和应变–结构面滑移型2类岩爆的孕育机制差异性:前者主要是拉张破裂引起,后者主要是拉张破坏、剪切破裂与拉剪–压剪破裂引起,剪切破裂主要沿着硬性结构面发生,形成爆坑边界。该研究成果为针对时空演化规律的深埋隧洞岩爆的预测和动态调控提供了重要基础。  相似文献   

5.
基于微震监测技术的岩爆预测机制研究   总被引:1,自引:0,他引:1  
 以锦屏二级水电站岩爆高发洞段作为研究对象,采用微震监测技术作为岩爆监测预警手段。通过对比现场实际情况和微震监测结果,揭示出微震的时空演化与岩爆之间的关系;通过岩体损伤过程特征提取对应的微震监测事件,总结出微震事件密度云图、微震事件震级与频度的关系、微震事件震级、能量集中度等微震监测指标规律,并以地震学中的3S原理作为岩爆判断基础,提出4个岩爆判据。现场应用结果表明:在深埋岩体隧洞中,岩爆的时间、空间、强度等分布存在较明显的规律性,微震活动对岩爆事件普遍具有时间优先性和空间一致性,应用该岩爆判据能够达到岩爆危险区域的精确预测,为隧洞的岩爆预测和微震监测预警提供依据。  相似文献   

6.
引汉济渭工程秦岭段4#支洞在开挖过程中多次遭遇岩爆的危害,为尽可能对岩爆风险区域进行有效的预报,减少开挖施工风险,利用微震监测技术对4#支洞进行了连续监测。构建秦岭隧洞4#支洞微震监测系统,实时监测开挖过程中隧洞围岩的微震信息,探究4#支洞围岩微震活动规律及其与岩爆灾害的关系。在此基础上,以岩爆经验预测为基础,提出基于微震前兆信息的岩爆要素综合预测方法,对岩爆的风险、范围、等级进行综合预测。研究结果表明:引汉济渭4#支洞岩爆大多数均存在明显的前兆信息,岩爆区域通常与微震事件的集中区域重合;岩爆发生前夕,高震级事件不断发生,同时b值有减小趋势;采用岩爆要素综合预测方法,在4#支洞测试洞段进行了17次预报,准确率达到76%。  相似文献   

7.
深埋隧洞岩爆孕育规律与机制:时滞型岩爆   总被引:5,自引:3,他引:2  
根据锦屏II级水电站引水隧洞现场岩爆发生机制,提出时滞型岩爆概念,并对时滞型岩爆进行系统研究,发现:(1)时滞型岩爆一般发生在隧洞掌子面开挖应力调整扰动范围之外,是岩爆区开挖应力调整与外界扰动联合作用的结果。80%的时滞型岩爆时间上滞后该区开挖时间6~30 d,空间上在距离掌子面80 m的范围内。(2)时滞型岩爆区,一般节理、裂隙、夹层等原生结构面比较丰富,结构面类型以与洞轴线成小夹角的隐性结构面为主。(3)时滞型岩爆区开挖时,应力调整剧烈,围岩的破裂活动较频繁,微震事件时间上持续增加,空间上位置集中;视体积持续增加,有突增趋势;能量指数持续高位,有下降趋势;岩爆发生前夕,微震事件较少,存在一个明显的"平静期",且岩爆发生时视体积和能量指数变化不明显。(4)时滞型岩爆区开挖卸荷后,初期微震事件以拉伸、剪切及拉剪混合型破坏为主;接着,以沿破坏面扩展的拉伸破坏为主;随后,有一个明显的"平静期";最后岩爆发生时,以剪切破坏为主导。根据时滞型岩爆的特征、演化规律与机制,建议时滞型岩爆应采取"减少扰动,先喷,再锚,紧挂网,紧复喷"的联防策略。  相似文献   

8.
 通过对锦屏二级水电站引水隧洞施工期间大量岩爆记录的深入研究,分析总结出岩爆沿里程分布规律、岩爆围岩破坏方式、隧洞横断面岩爆位置规律、岩爆次数与距掌子面的距离关系、岩爆次数与开挖后暴露时间关系、岩爆烈度与其围岩破坏范围关系等岩爆特征规律。通过对这些规律及岩爆分布与地质构造之间关系的研究,总结地质构造和岩爆的相互作用规律。将微震监测技术用于引水隧洞工程施工,进行深埋隧洞的岩爆监测预警,实现对微震活动的全天候连续监测分析,并根据现场对岩爆的微震监测结果,对微震的时空演化与岩爆之间的关系进行初步探讨。研究结果表明:深埋岩体隧洞中,岩爆的时间、空间、强度等分布存在较明显的规律性,并且与地质结构、施工工法、施工扰动等影响因素之间有着必然的联系,其中地质结构对岩爆的发生起控制作用;岩爆发生之前普遍存在一个孕育过程,并伴随着大量微破裂的产生和微震能量的释放(微震前兆),微震活动对岩爆事件普遍具有时间优先性和空间一致性,可利用其指导安全施工。本文的工程实践验证了微震监测技术用于深埋岩体隧洞岩爆监测预警的可行性,并具有较高准确率,从而为隧洞的岩爆预测和安全施工提供新的研究思路。  相似文献   

9.
深埋硬岩隧洞岩爆倾向性指标RVI的建立及验证   总被引:2,自引:1,他引:1  
 在总结国内外岩爆倾向性研究的主要成果和理论方法的基础上,针对性地提出适合于深埋隧洞工程的岩爆倾向性评估新方法的建立过程和基本构架。分析锦屏II级水电站深埋隧洞群中62例岩爆案例,揭示岩爆的特征和主要控制因素,在此基础上提出新的岩爆倾向性指标RVI及其建立方法,确定RVI中岩爆控制因素的选取原则。RVI由4个控制因子构成,即应力控制因子Fs、岩石物性因子Fr、岩体系统刚度因子Fm和地质构造因子Fg,4个控制因子分别反映不同岩爆控制因素对岩爆倾向性的贡献。研究发现,锦屏II级水电站深埋隧洞岩爆破坏深度与RVI存在显著的相关性,建立的经验关系式的确定系数可达到80%以上,该经验关系式可评估深埋隧洞工程的岩爆倾向性和破坏程度。锦屏II级水电站深埋隧洞典型岩爆实例分析验证RVI的适用性。  相似文献   

10.
引黄工程TBM掘进隧洞的施工特点   总被引:2,自引:2,他引:0  
徐建军 《山西建筑》2004,30(24):242-243
介绍了万家寨引黄工程南干线4号~7号隧洞工程概况,就全断面双护盾岩石掘进机(TBM)掘进隧洞的施工过程作了详细论述,指出该掘进方法是开挖与衬砌平行作业,具有施工速度快、效率高、施工安全等特点。  相似文献   

11.
高地应力区大直径TBM掘进岩爆风险控制   总被引:1,自引:0,他引:1  
锦屏二级水电站1#,3#引水隧洞采用TBM掘进,中部深埋洞段岩爆风险突出。为制定合理可行的掘进方案与岩爆防治措施,在前人研究基础上,结合工程实际情况,采用多种数值分析手段,评价不同形式导洞开掘,对降低岩爆风险的影响。3种导洞开挖方式均可以显著地降低TBM掘进的岩爆风险,选择何种形式的导洞主要从设备和经济效益角度进行决策。据此提出高地应力区大直径TBM掘进岩爆风险控制措施,施工中结合钻爆法导洞预处理、应力解除爆破并辅以及时、系统、高质量的支护,降低岩爆风险,确保施工及结构安全。  相似文献   

12.
There are many examples of TBM tunnels through mountains,or in mountainous terrain,which have suffered the ultimate fate of abandonment,due to insufficient pre-investigation.Depth-of-drilling limitatio...  相似文献   

13.
为了模拟深部高应力圆形隧洞在内部卸荷条件下洞壁发生岩爆的过程,以具有中等岩爆倾向性的红砂岩作为试验材料,利用TRW–3000岩石真三轴电液伺服诱变试验系统,对100 mm×100 mm×100 mm立方体红砂岩试样开展了先加载后钻孔卸荷条件下的岩爆模拟试验。试验模拟500 m深度的二维应力状态,首先对试样加载至设定的初始应力状态,然后利用自主研发的岩石钻孔卸荷试验装置进行岩石内部钻孔卸荷(孔洞直径为25mm),之后在竖直方向加载至洞壁发生破坏,达到模拟效果后主动卸载。试验过程中,利用微型摄像机监控并记录洞壁的整个破坏过程。为了对比卸荷作用的影响,对预先贯穿孔洞(孔洞直径为25mm)的同尺寸红砂岩试样开展了先开孔后加载条件下的岩爆模拟试验。试验结果表明,2种试验条件下均可实现岩爆过程的模拟,整个试验过程均可以划分为平静阶段、颗粒弹射阶段、岩片剥落阶段,最终在洞壁两侧形成V型槽。与先开孔后加载试验相比,先加载后开孔试验中洞壁的初始破坏应力较低,洞壁更容易发生破坏,并且洞壁发生岩爆破坏的严重程度较强,产生的岩片尺寸较大,洞壁剥落岩片的总质量较高,形成的V型槽深度较深,破坏范围较广。试验对比结果表明,高应力岩石内部卸荷会对围岩造成一定程度和范围的损伤,诱发围岩产生明显的强度弱化效应。  相似文献   

14.
为了解深部直墙拱形隧洞板裂破坏的发生过程和机制,采用TRW-3000真三轴试验系统对含直墙拱形孔洞的红砂岩立方体试样(100 mm×100 mm×100 mm)进行了真三轴试验,模拟了深度500 m初始地应力环境下直墙拱形隧洞板裂破坏过程,并利用岩样内部破坏视频监控系统对试验过程进行实时记录和监测。试验完成后,对试验过程中孔洞侧壁破坏过程、破坏特征进行了分析,并与同等深度的圆形孔洞洞壁破坏进行了对比。结果表明:在竖直应力为最大主应力和水平径向应力为最小主应力的条件下,直墙拱形孔洞破坏主要发生在两侧拱脚和拱腰之间,靠近自由面的围岩破裂为近似平行于最大主应力的板状薄岩片,呈典型的张拉板裂破裂特征;随最大主应力的增加,板裂破坏逐渐向孔洞水平径向发展,板裂岩片呈现中间厚、两翼薄的弧形特征,最终形成对称的V型槽破坏区,并具有明显的时间效应。与圆形孔洞的动力破坏特征相比,直墙拱形孔洞主要偏于静力破坏,且初始破坏所需应力水平高,孔洞侧壁在高应力环境中破坏更严重。  相似文献   

15.
16.
本文对隧道掘进机的不同类型进行了模拟建模程序编写,建立了隧道掘进机对开挖面岩体的作用力的分析方法,以及探讨了在原有块体理论程序应用平台BLKLAB中实现隧道掘进机存在情况下进行开挖面块体稳定性可视化分析的可行性。本研究为隧道掘进机对开挖面岩体作用力与扭矩简化分析及编程应用提供了新的思路,并为隧道掘进机可视化实现提供了编程可行性的例证。最后,对在开挖面块体稳定性可视化分析的时如何考虑隧道掘进机进行了讨论,为原有程序平台的拓展奠定了基础。  相似文献   

17.
以中亚第一长隧——乌兹别克斯坦卡姆奇克隧道为依托,在隧址区地应力特点、岩爆过程及特点综合分析的基础上,建立岩爆发生的力学模型,并在此基础上提出了主动控制岩爆的超前支护技术。研究表明:卡姆奇克隧道岩爆主要发生在拱顶附近,这主要是由于隧址区地应力最大主应力为水平方向且与隧道轴线接近垂直,隧道开挖后拱顶的切向应力最大的受力特点决定的;岩爆发生过程可分为拱顶围岩劈裂成板、岩板脆性断裂成块和块片弹射3个阶段;岩爆力学模型可简化为拱顶层状薄板在水平力作用下的脆性断裂失稳,岩板脆性断裂失稳的临界水平应力scr与岩板无支承长度L的平方成反比、与岩板厚度t的平方成正比,该力学模型可很好地解释卡姆奇克隧道岩爆的发生特点及主要表现特征。在此基础上,研发了一种通过减少拱顶岩板无支承长度、提高岩板厚度,从而提高岩板脆性断裂失稳临界应力,进而主动防止和减弱岩爆的超前支护技术,并在卡姆奇克隧道得到了广泛使用,取得了很好的岩爆防治效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号