首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An economic analysis of the role of biogas and cooling water in a lithium bromide—water absorption system has been carried out to optimize the generator, condenser and absorber temperatures at a given evaporator temperature and solution pumping rate. The analysis has been repeated for different pumping rates (PR) to determine the optimum PR corresponding to the minimum over-all operating cost of the system. The study has also been carried out for the condition when biogas in the generator and cooling water in the absorber and condenser are supplied at equal flow-rates. It is found that the performance of the LiBr-H2O system at equal biogas and cooling water flow-rates is about 5.988% higher than when operated at the minimum over-all operating cost, the latter being cheaper by only 2.71%. For low evaporation temperatures, use of a preheater in a LiBr-H2O system creates a crystallization problem when operated at low pumping rates. The study has therefore been extended for a system without preheater. The parameters under study are illustrated graphically against the generator temperature. Equations to obtain the corresponding optimum condenser and absorber temperature are given. The functional relationship between crystallization limit and absorbent temperature has also been obtained. The optimum operating parameters are presented graphically.  相似文献   

2.
Irreversibilities in components of an aqua-ammonia absorption refrigeratio system (ARS) have been determined by second law analysis. The components of the ARS are as follows: condenser, evaporator, absorber, generator, pump, expansion valves, mixture heat exchanger and refrigerant heat exchanger. It is assumed that the ammonia concentration at the generator exit is, independent of the other parameters, equal to 0.999 and at the evaporator exit the gas is saturated vapour. Pressrre losses between the generator and condenser, and the evaporator and absorber are taken into consideration. In the results the dimensionless exergy loss of each component, the exergetic coefficient of performance, the coefficient of performance and the circulation ratio are given graphically for each different generator, evaporator, condenser and absorber temperature.  相似文献   

3.
In this context, a two-stage absorption-transcritical hybrid refrigeration system is proposed. R744 is chosen as a refrigerant for the transcritical heat pump subsystem and LiBr-H2O working pair for the two-stage absorption refrigeration subsystem. Based on the mathematical and physical models, theoretical investigation is carried out on its performance. The main effects are discussed on COPnet (the ratio of cooling capacity powered by low-grade heat to the low-grade heat consumption for the hybrid system) and COPmt (the ratio of cooling capacity powered by mechanical work to the mechanical work consumption for the hybrid system). Comparing with the normal two-stage absorption refrigeration system, theoretical results show that COPnet could be improved up to about 55% when the refrigeration temperature is 7 °C. In addition, COPmt are more than 50% higher than that of the conventional transcritical refrigeration system. It is also found that both 45–55 °C low-grade heat and condensing heat could be used as actuating heat of the two-stage absorption refrigeration subsystem.  相似文献   

4.
This study presents an experimental investigation of a solar thermal powered ammonia–water absorption refrigeration system. The focus of this study lies on the design of the components of the absorption chiller, the ice storages and the solar collector field as well as the integration of the data acquisition and control unit. An ammonia–water (NH3/H2O) absorption chiller was developed in the laboratory of the Institute of Thermodynamics & Thermal Engineering (ITW) at the University of Stuttgart (Germany). A demonstration plant was built in the laboratory of the CoRE-RE at King Fahd University of Petroleum & Minerals (KFUPM – Saudi Arabia). The whole system was tested successfully. The results of the experiments indicated a chiller coefficient of performance (COP) of 0.69 and a cooling capacity of 10.1 kW at 114/23/−2 (°C) representing the temperatures of the generator inlet, the condenser/absorber inlet and the evaporator outlet respectively. Even at 140/45/−4 (°C), the chiller was running with a cooling capacity of 4.5 kW and a COP of 0.42.  相似文献   

5.
Thermodynamic analysis of LiBr–H2O single, double and triple effect vapour absorption cycles has been carried out using LPG and CNG as sources of energy. Optimization of operating temperatures in single to triple effect cycles has been carried out for maximum COP of the system and minimum gas requirement in it at desired temperatures in evaporator, absorber and main condenser using iterative technique. In single effect cycle, optimum temperatures in main generator have been obtained, while in double effect cycle, low pressure generator, high pressure condenser and main generator temperatures have been optimized. In triple effect cycle having three condensers and three generators, condenser temperatures (Tc3 and Tc4) and generator temperatures (Tg2, Tg3 and Tg) have been optimized. The maximum COP of triple effect cycle goes up to 1.955 which is around 132% higher than single effect cycle with its gas requirement reduced to around 122% at the same conditions.  相似文献   

6.
In the present study, a novel solar driven combined power and ejector refrigeration system (CPER) of 50 kW power capacity composed of an ORC (organic Rankine cycle) and an ejector refrigeration system is investigated. Solar driven CPER system is composed of two main cycles: collector cycle and refrigeration cycle. The collector cycle is made of a U-tube ETC and circulation pump and the ejector refrigeration cycle consists of generator, turbine, ejector, heat exchanger, condenser, evaporator, expansion valve, and pump. Thermodynamic performance of the proposed CPER system is evaluated and a thermo-economic analysis is conducted using the SPECO (specific exergy costing) method. A parametric study showed the effects of condenser temperature, evaporator temperature, generator pressure, turbine back pressure and turbine extraction ratio. The genetic algorithm optimization analysis is conducted which shows 25.5% improvement in thermal energy, 21.27% in exergy efficiency, and 7.76% reduction in the total cost of the CPER system. The results reveal that the performance of the CPER system is considerably improved at higher temperatures of generator and evaporator.  相似文献   

7.
This study deals with a frost-free household refrigerator-freezer, in which frosting can be retarded by dehumidifying the air before it enters the evaporator of the refrigerator-freezer via a desiccant-coated heat exchanger. Because the desiccant can be regenerated via the condensation heat of the refrigerant (which is exhausted into ambient air in conventional household refrigerator-freezers), the proposed system can achieve high energy efficiency. Calculations show that the coefficient of performance of this system (COP) is within the range 1.5–2.5 at an ambient temperature of 15–35 °C. Moreover, it is found that the relative humidity of the refrigerator air (RHRA) and the temperature of freezer air (TFA) have a significant effect on COP: COP decreases by about 13% when RHRA varies from 0.4 to 0.8 and by 10% when TFA runs from −18 to −23 °C.  相似文献   

8.
Development of an ejector cooling system with thermal pumping effect   总被引:1,自引:1,他引:1  
This paper presents a feasibility study of an ejector cooling system (ECS) that utilizes a multi-function generator (MFG) to eliminate the mechanical pump. The MFG serves as both a pump and a vapor generator. The MFG is designed based on the pressure equilibration between high and low pressures through heating and cooling process. In this design, an ECS that contains no moving components and is entirely powered by heat can be practicable. A prototype using refrigerant R141b as working fluid was constructed and tested in the present study. The experimental results showed that the system coefficient of performance (COPo) was 0.218 and the cooling capacity was 0.786 kW at generating temperature (TG) 90 °C, condensing temperature (TC) 32.4 °C and evaporating temperature (TE) 8.2 °C. While taking into account the extra heat needed for the MFG operation, the total coefficient of performance (COPt) is 0.185. It is shown that a continuous operation for the generation of cooling effect in an ECS with MFG can be achieved. This cooling machine can be very reliable since there is no moving part.  相似文献   

9.
Generator temperatures in ammonia absorption systems at subfreezing evaporator conditions have been optimized to use the minimum volume of biogas required to operate two-stage dual-fluid cycles. In this dual-fluid cycle, a LiBr---H2O absorption system is used at the first stage with ammonia absorption systems at the second stage. Three different refrigerant-absorbent combinations (NH3---H2O, NH3---NaSCN, NH3---LiNO3) were selected for this study. The absorber at the second stage is cooled by the low temperature water-refrigerant from the evaporator at the first stage. Lowering the absorber temperature reduces the heat input to the generator, which lowers the generating temperature and improves the performance of the absorption systems at the second stage. The optimum generator temperatures and performance coefficients of the systems at the first and second stages and the overall two-stage dual-fluid cycles are presented graphically. A comparative study between the three ammonia systems used in the two-stage dual-fluid cycle has been carried out.  相似文献   

10.
A silica gel coated heat exchanger based air conditioning system driven by the evacuated tube solar water heater has been experimentally investigated. The system has been operated for two different modes namely cooling with dehumidification mode and heating with humidification mode in summer and winter season respectively. The system performance is analyzed in terms of regeneration rate, dehumidification rate and thermal coefficient of performance (COPth). Experimental results demonstrated that, for cooling and dehumidification mode, the process air is cooled by an average temperature of 8.5 °C. A better dehumidification rate can be achieved by using pre-cooling before dehumidification process. Post-cooling after dehumidification process is found to be advantageous for cooling capacity and COPth. For heating with humidification mode, the process air is heated by an average temperature of 13.3 °C with an average increment in humidity ratio of 1.9 g/kg. It is found that the average COPth of the system is 0.45 and 0.87 for cooling and heating mode respectively.  相似文献   

11.
The present study develops a cooling system using water as the working medium which is cooled at night by cellulose-pad cooling tower (CWCT) and stored for cooling application at daytime. That is, it utilizes the natural energy drawn from diurnal ambient air temperature difference. A cooling system was built and tested. It is found that the coefficient of performance of CWCT for heat dissipation of water at night, COPnt, is between 3.8 and 11 and varies linearly with the evaporation temperature glide DG (difference between cold water temperature in the storage tank and wet-bulb temperature of ambient air). The COP for room cooling at daytime run with air cooler in a room, COPday, is between 8.8 and 12.6. For day cycle operation, the measured overall cooling COPo is 5.1. COPo is expected to reach 9.4 at room temperature 45 °C.  相似文献   

12.
Exergy analysis is recently being employed as one of the preferred methods to improve the design performance of a system and to achieve overall sustainability. Exergy is mainly composed of physical or thermo-mechanical and chemical components and a single stream can possess one or more forms of exergy. Where there is exergy lost in unused chemical streams or wasted energy, the recovery of exergy would reduce losses and increase the second law efficiency of the process. In many chemical process plants such as hydrogen (H2), ammonia, nitric acid, etc., there is a potential to recover waste or excess heat by process heat exchange or by generating utilities. For a process like steam–methane (CH4) reforming (SMR), exergy efficiency can be improved by recovering the available excess heat partially or fully in the form of chemical energy or thermal energy. This paper presents the generalised system analysis to show that the recovery of exergy in the form of chemical energy is better than in thermal energy form due to fewer losses and higher efficiency. The concept is illustrated with the example of a simple combustion system with excess heat in which saving fuel proves to be more exergy efficient than generating utility. The approach is applied to an industrial case study of H2-producing SMR plant with two modified cases of steam generation and recycling portion of unconverted CH4 as feed. In the case study, heat exchanger network is treated as a separate process component and a simple methodology is proposed to calculate the exergy losses for the same. The results of the case study prove that the recovery of chemical energy is more efficient than that of thermal energy from an exergy perspective.  相似文献   

13.
在热电冷联产系统中,溴化锂吸收式制冷机在制冷过程中排放了大量的废热,这些废热品味低,难以直接回收利用。在此提出了两级双效溴化锂制冷-热泵复合循环,该循环具有冷凝温度较高的特点,便于直接回收冷凝排放热。系统以背压汽轮机的背压蒸汽为热源,制冷的同时利用循环所排出的废热加热锅炉补充水至较高温度。以具有相同功效的双效溴冷机与单效溴化锂热泵联合运行作为对比循环,制冷-热泵复合循环系统省去了一台蒸发器与冷凝器,减少了两个换热温差,并且通过热力计算、能量分析和分析表明,该循环的能量利用率与效率均有很大的提高,效率比对比循环提高了45%。  相似文献   

14.
In this paper, the energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption systems is presented. A computational model has been developed for the parametric investigation of these systems. Newly developed computationally efficient property equations of water–lithium bromide solution have been used in the computer code. The analysis involves the determination of effects of generator, absorber and evaporator temperatures on the energetic and exergetic performance of these systems. The effects of pressure drop between evaporator and absorber, and effectiveness of heat exchangers are also investigated. The performance parameters computed are coefficient of performance, exergy destruction, efficiency defects and exergetic efficiency. The results indicate that coefficient of performance of the single effect system lies in range of 0.6–0.75 and the corresponding value of coefficient of performance for the series flow double effect system lies in the range of 1–1.28. The effect of parameters such as temperature difference between heat source and generator and evaporator and cold room have also been investigated. Irreversibility is highest in the absorber in both systems when compared to other system components.  相似文献   

15.
A detailed theoretical analysis is presented for a two-stage LiBr/H2O absorption refrigeration system, which consists of an evaporator, a low-pressure absorber, a low-pressure generator, a high-pressure absorber, a high-pressure generator, a condenser, a low-pressure heat exchanger and a high-pressure heat exchanger, driven by a low-temperature hot source. A comparison of results from the theoretical analysis and preliminary experiment indicates that the theoretical analysis developed can represent a real system with a reasonable accuracy, and is useful for future development.  相似文献   

16.
A new combined power and refrigeration cycle is proposed for the cogeneration, which combines the Rankine cycle and the ejector refrigeration cycle by adding an extraction turbine between heat recovery vapor generator (HRVG) and ejector. This combined cycle could produce both power output and refrigeration output simultaneously, and could be driven by the flue gas from gas turbine or engine, solar energy, geothermal energy and industrial waste heats. Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the performance and exergy destruction in each component for the combined cycle. The results show that the condenser temperature, the evaporator temperature, the turbine inlet pressure, the turbine extraction pressure and extraction ratio have significant effects on the turbine power output, refrigeration output, exergy efficiency and exergy destruction in each component in the combined cycle. It is also shown that the biggest exergy destruction occurs in the heat recovery vapor generator, followed by the ejector and turbine.  相似文献   

17.
In this paper, an integrated gas-injected scroll compressor heat pump system using R1234yf, R32 and its binary mixtures as working fluid was developed and their heating performances under low ambient temperature were quantitatively evaluated. A composite test system consisting of second-refrigerant calorimeter and water-cooled condenser was used to test the system working performance. The condensing temperature, evaporating temperature, compressor power input and other variables were analyzed to evaluate the system heating capability and energy efficiency. Test results showed that the R1234yf system can run at an evaporating temperature of −25 °C. R1234yf/R32 mixture can run at an evaporating temperature of −20 °C and it has the highest heating COP value among other refrigerants; R1234yf/R32 gas injection system provided very significant performance improvements for heating performance, compared with no gas injection, the heating capacity and heating COP can improve 16%~20% and 13%~16%, respectively.  相似文献   

18.
The characteristic performance curves of vapor-compression refrigeration systems are defined as a plot between the inverse coefficient of performance (1/COP) and inverse cooling capacity (1/ ) of the system. Using the actual data of a simple vapor-compression system, performance curves of the system are obtained. The curves were found to be linear and this linear relation between 1/COP and 1/ is explained in the light of various losses of the system, resulting from the irreversibilities losses due to finite rate of heat transfer in the heat exchangers and non-isentropic compression and expansion in the compressor and expansion valve of the system, respectively. A finite-time thermodynamic model which simulates the working of an actual vapor-compression system is also developed. The model is used to study the performance of a variable-speed refrigeration system in which the evaporator capacity is varied by changing the mass-flow rate of the refrigerant, while keeping the inlet chilled-water temperature as constant. The model is also used for predicting an optimum distribution of heat-exchanger areas between the evaporator and condenser for a given total heat exchanger area. In addition, the effect of subcooling and superheating on the system performance is also investigated.  相似文献   

19.
A novel chiller with double evaporating temperatures is proposed in this paper, which can be applied in temperature and humidity independent control system (THICS). A zeotropic mixture R32/R236fa is selected as the refrigerant, and chilled water with two different temperatures is produced. The experimental coefficient of performance (COPexp), theoretical coefficient of performance (COPth), and second law efficiency (η) of the chiller are studied. The performance of the chiller is studied by varying the mass fraction of R32 in the R32/R236fa (W(R32)), chilled water temperature, and the flow rates of the heat transfer media (chilled water and cooling water). The results show that the high temperature chilled water (TH,out) can be at 15–18 °C, and the low temperature chilled water (TL,out) can be at 6–8 °C. When TH,out is 17 °C and TL,out is 7 °C, the maximum COPth and COPexp are 4.73 and 3.97, respectively. Second law efficiency, η, increases to 31% as W(R32) increases from 0.3 to 0.6.  相似文献   

20.
A study has been made of the use of an absorption heat pump for the heating of buildings. With the aid of a computerized parameter study, one can evaluate the COP that can be achieved with single-stage absorption heat pumps as a function of external parameters and the irreversibilities in the components of the heat pump. An NH3H2O mixture was used. The condenser was replaced by a resorber in order to avoid the excessive pressure in the former. The COP is thus evaluated for this resorption cycle as a function of the resorption pressure. The absorber pressure and the temperature of the weak solution leaving the generator were optimized in order to achieve a better COP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号