首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
提出了一种基于六维力/力矩传感器的模块化机器人惯性参数辨识的方法。首先,通过Newton-Euler方程建立模块化机器人的动力学方程,然后利用基座力旋量平衡原理建立辨识模型对动力学方程中的未知参数进行辨识,最后以德国AMTEC公司生产的PowerCube模块化机器人实体对这种方法进行了实验验证。  相似文献   

2.
提出了一种基于六维力/力矩传感器的模块化机器人惯性参数辨识的方法。首先,通过Newton-Euler方程建立模块化机器人的动力学方程,然后利用基座力旋量平衡原理建立辨识模型对动力学方程中的未知参数进行辨识,最后以德国AMTEC公司生产的PowerCube模块化机器人实体对这种方法进行了实验验证。  相似文献   

3.
微型五维指尖力/力矩传感器的研究   总被引:2,自引:0,他引:2  
杨磊  高晓辉  姜力  刘宏 《机器人》2003,25(2):143-146
本文介绍了RPJ D型喷浆机器人的机械机构,重点给出了其分布式计算机控 制系统的设计过程.将容错技术、故障诊断技术和抗恶劣环境技术引入喷浆机器人控制系统 中,采用不同的冗余配置方式实现了控制系统规划级和控制级计算机系统高可靠性设计.现 场应用表明,完全满足了喷浆机器人在恶劣环境下工作的要求.  相似文献   

4.
针对工业机器人末端负载与外界环境接触力的感知需求,在机器人法兰与负载之间设置六维力传感器,并研究一套标定与计算方法,综合考虑负载重力作用、传感器零点、机器人安装倾角等因素,利用不少于3个机器人姿态下的力传感器数据,可求得传感器零点、机器人安装倾角、负载重力大小、负载重心坐标等参数,进一步可消除传感器零点及负载重力对受力感知的影响,精确得到机器人末端负载所受的外部作用力与力矩.实验得到对于重量从320N到1917N的负载,在静态条件下,感知外力的误差在负载重力的0.28%以内,感知外力矩的误差在负载对传感器力矩的0.59%以内.  相似文献   

5.
为了对连杆空间力矩传感器进行动态补偿,提出了适用于求取串联机器人任意连杆中任意一点处所受的内力和内力矩的算法.该算法采用连杆假想截断原理利用牛顿-欧拉方程推导而出.推导过程综合考虑了串联机器人是否处于静态以及末端是否受外力作用的情况,以及串联机器人的关节是否是回转关节的情况.然后利用该算法计算动态补偿值,构建了基于连杆力矩传感器动态补偿的笛卡儿阻抗控制器.最后在HIT/DLR Hand II五指灵巧手上进行了实验验证.实验结果一方面验证了该算法的有效性,另一方面也验证了本文所构建的笛卡儿阻抗控制器的有效性.  相似文献   

6.
Abstract

Robot position/force control provides an interaction scheme between the robot and the environment. When the environment is unknown, learning algorithms are needed. But, the learning space and learning time are big. To balance the learning accuracy and the learning time, we propose a hybrid reinforcement learning method, which can be in both discrete and continuous domains. The discrete-time learning has poor learning accuracy and less learning time. The continuous-time learning is slow but has better learning precision. This hybrid reinforcement learning learns the optimal contact force, meanwhile it minimizes the position error in the unknown environment. Convergence of the proposed learning algorithm is proven. Real-time experiments are carried out using the pan and tilt robot and the force/torque sensor.  相似文献   

7.
This paper addresses a biped balancing task in which an unknown external force is exerted, using the so-called ‘ankle strategy’ model. When an external force is periodic, a human adaptively maintains the balance, next learns how much force should be produced at the ankle joint from its repeatability, and finally memorized it as a motion pattern. To acquire motion patterns with balancing, we propose a control and learning method: as the control method, we adopt ground reaction force feedback to cope with an uncertain external force, while, as the learning method, we introduce a motion pattern generator that memorizes the torque pattern of the ankle joint by use of Fourier series expansion. In this learning process, the period estimation of the external force is crucial; this estimation is achieved based on local autocorrelation of joint trajectories. Computer simulations and robot experiments show effective control and learning results with respect to unknown periodic external forces.  相似文献   

8.
对未知环境的机器人力控自律跟踪及建模   总被引:1,自引:1,他引:0  
赵东波  熊有伦 《机器人》1995,17(1):7-12
在考虑摩擦力的情况下,利用传感器所感知的机器人和未知轮廓间的相互作用力确接触处轮廓的切矢和法矢,据此建立端点约束坐标系,在该坐标系中沿切矢进行位置控制并沿法矢进行力控制。实现机器人对未知轮廓的自律跟踪运动。由跟踪运动所确定每一点处切矢信息及该点位置信息构造未知轮廓几何模型。在机器人学开放研究实验室的PUMA562机器人上实现了上述自律运动并建立了环境模型。  相似文献   

9.
With the increasing number of human-robot interaction applications, robot control characteristics and their effects on safety as well as performance should be taken account into the robot control system. In this paper, a position and torque switching control method was proposed to improve the robot safety and performance, when robots and humans work in the same space. The switching control method includes two modes, the position control mode using a proportion-integral (PI) algorithm, and the torque control mode using sliding mode control (SMC) algorithm for eliminating swing. Under the normal condition, the robot works in position control mode for trajectory tracking with quick response. Once the robot and human collide, the robot will switch to torque control mode immediately, and the impact force will be restricted within a safe range. When the robot and human detach, the robot will resume to position control mode automatically. Moreover, for a better performance, the joint torque is detected from direct-current (DC) motor’s current rather than the torque sensor. The experiment results show that the proposed approach is effective and feasible.  相似文献   

10.
《Advanced Robotics》2013,27(5):505-518
This paper describes a method for whole-finger rolling manipulation using a two-fingered robot hand. 'Whole-finger' refers to the use of the complete phalangeal surface during the manipulation. An example of whole-finger manipulation by the human hand is the rolling of a pen between two fingers. The proposed method is based on a two-dimensional model for modelling an object manipulation and is derived from a study of the movement of the contact line between both fingers. Also, the method uses tactile sensor information to estimate the contact point position together with the local curvature of the object. This whole-finger dexterous manipulation is demonstrated on a prototype two-fingered hand. This 5 d.o.f. hand consists of a tendon driven index and thumb, and is equipped with force and tactile sensors. The dimensions and performance of this device are 'human-sized'. A hybrid force-position control scheme is used. The hierarchical control structure is implemented on a dual transputer system. This paper first describes the kinematic model used for whole-finger manipulation. In the second part, the main emphasis is put on the mechanical design and on the transputer-based control system.  相似文献   

11.
We develop strategies for a group of mobile sensing agents to cooperatively explore level surfaces of an unknown 3D scalar field. A cooperative Kalman filter is constructed to combine sensor readings from all agents and give estimates of the field value and gradient at the center of the formation formed by the sensing agents. The formation formed by the agents is controlled to track curves on a level surface in the field under steering control laws. We prove that the formation center can move to a desired level surface and can follow a curve with known frame and curvatures. In particular, we present results on tracking lines of curvature on a desired level surface, revealing the 3D geometry of the scalar field. Taubin’s algorithm is modified and applied to detect and estimate principal curvatures and principal directions for lines of curvature. We prove the sufficient and necessary conditions that ensure reliable estimates using Taubin’s algorithm. We also theoretically justify the minimum number of agents that can be utilized to accomplish the exploration tasks. Simulation results demonstrate that a line of curvature on a desired level surface can be detected and traced successfully.  相似文献   

12.
In dexterous robotic manipulation, it is essential to control the force exerted by the robot hands while grasping. This paper describes a method by which robot hands can be controlled on the basis of previous experience of slippage of objects held by the hand. We developed an anthropomorphic human scale robot hand equipped with an elastic skin in which two types of sensor are randomly embedded. One of these sensors is a piezoelectric polyvinylidenefluoride (PVDF) film which can be used for the detection of pressure changes. The other is a strain gauge which can measure static pressure. In our system, PVDF films are used to detect slipping, and strain gauges to measure stresses which are caused by normal and shear forces. The stress measured by the strain gauges is used as input data to a neural network which controls the actuators of the robot. Once slip is detected, the neural network is updated to prevent it. We show that this system can control the grasp force of the robot hand and adapt it to the weight of the object. By using this method, it was shown that robots can hold objects safely.  相似文献   

13.
In this paper, we propose a method of exploring the surface geometry of an unknown object by touch. The method is based on the idea that a three-dimensional surface geometry can be reconstructed from two principal curvatures of the object which are estimated from three concurrent curves. First, the process to minimize the number of contact points is addressed for the approximation of an arbitrary curve, which uses normal vectors at the contact points. Then, an algorithm for reconstructing a three-dimensional local surface from four contact points, two of which can be used to compute a normal curvature, is presented. Lastly, our method is applied to cylindrical, spherical and planar objects in simulation and experiments for validation.  相似文献   

14.
The computation of the curvature of smooth surfaces has a long history in differential geometry and is essential for many geometric modeling applications such as feature detection. We present a novel approach to calculate the mean curvature from arbitrary normal curvatures. Then, we demonstrate how the same method can be used to obtain new formulae to compute the Gaussian curvature and the curvature tensor. The idea is to compute the curvature integrals by a weighted sum by making use of the periodic structure of the normal curvatures to make the quadratures exact. Finally, we derive an approximation formula for the curvature of discrete data like meshes and show its convergence if quadratically converging normals are available.  相似文献   

15.
《Advanced Robotics》2013,27(4):325-343
In this study, we deal with the twisting motion of a falling cat robot by means of two torque inputs around her waist. The cat robot consists of two rigid columns and has two internal actuators at the joint to generate torque inputs around normal coordinates. This system is a nonholonomic system whose angular momentum is conserved. We formulate the state equation that has torque inputs to the joint by using the nonholonomic constraint and the Lagrange-d'Alembert principle. Then, we transform the system into a linear parameter varying system. In order to improve error learning of a final-state control method, we provide the initial inputs in order to determine the appropriate rotation direction in the early stage of the twisting motion. Next, we introduce the method of the artificial potential function to the final-state control in order to make the maximum bending angle small. The feedforward torque inputs can be obtained by the final-state control in order to bring the system from the initial state to the final state in the desired time. In simulations, we also demonstrate that the twolink cat robot can land on her feet by using the 2-d.o.f. control system even when her waist damping coefficient varies.  相似文献   

16.
段宝阁  杨尚尚  谢啸  肖晓晖 《机器人》2022,44(4):504-512
针对双曲率曲面零件的复合材料织物铺放,手工铺放效率低、质量均一性差,机器人铺放的相关研究未能准确地描述手工铺放技能。为此,本文提出基于模仿学习的铺放技能采集、描述与重现的相关方法。首先,利用拖动示教获取织物铺放的轨迹信息,以压力阈值为分割依据进行有监督的轨迹分割,再采用高斯混合模型(Gaussian mixture m...  相似文献   

17.
《Advanced Robotics》2013,27(9):1067-1084
This article deals with the interaction between humans and industrial robots, more specifically with the new design and implementation of an algorithm for force-guided motions of a 6-d.o.f. robot. It may be used to comfortably teach positions without using any teaching pendant or for some assistance tasks. For this purpose, from readings of the force/torque sensor mounted in the robot wrist, the gravity forces and torques first have to be eliminated. To control the robot in joint space, it is then convenient to transform the external force and torque values from Cartesian space into joint space using the manipulator transposed Jacobian. This is why with the present approach the Jacobian matrix of the robot used was calculated. Now, from the computed joint torques, suitable position commands of the robot arm can be generated to obtain the desired behavior. A suggestion for this desired behavior is also included in this article. It is based on the impedance control approach in joint space. The proposed algorithm was implemented with the standard Stäubli RX90B industrial robot.  相似文献   

18.
This paper proposes a fault tolerant framework for biosignal-based robot control with multiple sensor electrodes. In this approach, to cope with sensor faults, a reliable joint torque estimation model is selected from a group of estimation models based on sensor failure classifiers. The correlation among the electromyography (EMG) signal streams is used as input feature vectors for fault detection. To validate our proposed method, we artificially disconnect an EMG electrode or detach one side of an EMG probe from the skin surface during elbow-joint torque estimation experiments with five participants. When one EMG sensor electrode experiences one of the problems, the experimental results show that the joint torque can be estimated with significantly fewer errors using our proposed approach than a joint torque estimation method without sensor fault detection or than a method with a conventional sensor fault detection algorithm. Furthermore, we controlled a mannequin-arm-attached one-DOF exoskeleton based on the estimated torque profiles by generating movements with the estimated torque derived from the selected model.  相似文献   

19.
This article addresses the feasibility of applying discrete-time model reference adaptive control techniques to the flexible link of robot mechanisms. The method of separation of variables is used to represent the deflection of the link. A nonlinear model is obtained using a Lagrangian equation, and the candidate frequencies and the associated mode functions are obtained using Bernoulli-Euler beam theory. By considering the effect of flexibility as an internal disturbance torque acting on the rigid body motion of the system, a discrete-time MRAC is determined for a single non-rigid link. The control algorithm is implemented for a collocated sensor and actuator system, and for a noncollocated end-point sensor and actuator system. Results of computer simulation show the feasibility of this approach and the advantage of using an end-point sensing system.  相似文献   

20.
马妍  宋爱国 《测控技术》2014,33(1):74-78
研究了一种基于STM32的力反馈型康复机器人控制系统的设计。采用位置传感器和扭矩传感器检测康复机器人机械臂的位置信息以及机械臂与患者的相互作用力信息,将位置信息与作用力信息送入基于ARM-M3内核的STM32微控制器进行处理,从而实现康复机器人中驱动电机的控制。该系统硬件处理电路包括了扭矩信号的信号调理单元、微控制器控制单元、电机驱动单元以及USB接口单元。经实验验证,本系统可以实现康复机器人的平稳安全的控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号