共查询到20条相似文献,搜索用时 15 毫秒
1.
梯度算法下RBF网的参数变化动态 总被引:2,自引:0,他引:2
分析神经网络学习过程中各参数的变化动态,对理解网络的动力学行为,改进网络的结构和性能等具有积极意义.本文讨论了用梯度算法优化误差平方和损失函数时RBF网隐节点参数的变化动态,即算法收敛后各隐节点参数的可能取值.主要结论包括:如果算法收敛后损失函数不为零,则各隐节点将位于样本输入的加权聚类中心;如果损失函数为零,则网络中的冗余隐节点将出现萎缩、衰减、外移或重合现象.进一步的试验发现,对结构过大的RBF网,冗余隐节点的萎缩、外移、衰减和重合是频繁出现的现象. 相似文献
2.
This paper presents a new evolutionary cooperative learning scheme, able to solve function approximation and classification problems with improved accuracy and generalization capabilities. The proposed method optimizes the construction of radial basis function (RBF) networks, based on a cooperative particle swarm optimization (CPSO) framework. It allows for using variable-width basis functions, which increase the flexibility of the produced models, while performing full network optimization by concurrently determining the rest of the RBF parameters, namely center locations, synaptic weights and network size. To avoid the excessive number of design variables, which hinders the optimization task, a compact representation scheme is introduced, using two distinct swarms. The first swarm applies the non-symmetric fuzzy means algorithm to calculate the network structure and RBF kernel center coordinates, while the second encodes the basis function widths by introducing a modified neighbor coverage heuristic. The two swarms work together in a cooperative way, by exchanging information towards discovering improved RBF network configurations, whereas a suitably tailored reset operation is incorporated to help avoid stagnation. The superiority of the proposed scheme is illustrated through implementation in a wide range of benchmark problems, and comparison with alternative approaches. 相似文献
3.
径向基函数神经网络的一种两级学习方法 总被引:1,自引:1,他引:1
建立RBF(radial basis function)神经网络模型关键在于确定网络隐中心向量、基宽度参数和隐节点数.为设计结构简单,且具有良好泛化性能径向基网络结构,本文提出了一种RBF网络的两级学习新设计方法.该方法在下级由正则化正交最小二乘法与D-最优试验设计结合算法自动构建结构节俭的RBF网络模型;在上级通过粒子群优化算法优选结合算法中影响网络泛化性能的3个学习参数,即基宽度参数、正则化系数和D-最优代价系数的最佳参数组合.仿真实例表明了该方法的有效性. 相似文献
4.
布图规划在超大规模集成电路(VLSI)物理设计过程中具有重要作用,它是一个多目标组合优化问题且被证明是一个NP问题。为了有效解决布图规划问题,本文提出一个多目标粒子群优化(PSO)算法。该算法采用序列对表示法对粒子进行编码,根据遗传算法交叉算子的思想对粒子更新公式进行了修改;引入Pareto最优解的概念和精英保留策略,并设计了一个基于表现型共享的适应值函数以维护种群的多样性。仿真实验通过对MCNC标准问题的测试表明了本文算法是可行且有效的。 相似文献
5.
This paper presents a new sequential multi-category classifier using radial basis function (SMC-RBF) network for real-world classification problems. The classification algorithm processes the training data one by one and builds the RBF network starting with zero hidden neuron. The growth criterion uses the misclassification error, the approximation error to the true decision boundary and a distance measure between the current sample and the nearest neuron belonging to the same class. SMC-RBF uses the hinge loss function (instead of the mean square loss function) for a more accurate estimate of the posterior probability. For network parameter updates, a decoupled extended Kalman filter is used to reduce the computational overhead. Performance of the proposed algorithm is evaluated using three benchmark problems, viz., image segmentation, vehicle and glass from the UCI machine learning repository. In addition, performance comparison has also been done on two real-world problems in the areas of remote sensing and bio-informatics. The performance of the proposed SMC-RBF classifier is also compared with the other RBF sequential learning algorithms like MRAN, GAP-RBFN, OS-ELM and the well-known batch classification algorithm SVM. The results indicate that SMC-RBF produces a higher classification accuracy with a more compact network. Also, the study indicates that using a function approximation algorithm for classification problems may not work well when the classes are not well separated and the training data is not uniformly distributed among the classes. 相似文献
6.
提出利用粒子群优化算法训练神经网络的算法,进行混沌系统辨识,并与神经网络、遗传神经网络对同一混沌系统辨识的结果进行比较。实验表明,利用粒子群优化算法训练神经网络进行混沌系统辨识,在不明显增加执行时间的基础上,寻求最优解的质量有显著提高,并且原理简单,容易实现,可有效用于混沌系统的辨识。 相似文献
7.
8.
9.
为了提高径向基神经网络(radial basis funtion neural network,RBFNN)进行模拟电路故障诊断的速度与准确性,提出了一种基于粒子群算法(particle swarm optimization,PSO)优化RBFNN的故障诊断方法。该方法利用PSO优化RBFNN的结构参数,克服了神经网络中模型结构和参数难以设置的缺点,避免了参数选择的盲目性;同时对模拟电路的响应信号采用小波包分解,提取有效故障特征。仿真结果表明,方法具有更高的诊断精度和更快的收敛速度,能有效地实施模拟电路的故障定位。 相似文献
10.
Alberto Guillén Ignacio Rojas Jesús González Héctor Pomares L. J. Herrera O. Valenzuela F. Rojas 《Neural Processing Letters》2007,25(3):209-225
The use of Radial Basis Function Neural Networks (RBFNNs) to solve functional approximation problems has been addressed many
times in the literature. When designing an RBFNN to approximate a function, the first step consists of the initialization
of the centers of the RBFs. This initialization task is very important because the rest of the steps are based on the positions
of the centers. Many clustering techniques have been applied for this purpose achieving good results although they were constrained
to the clustering problem. The next step of the design of an RBFNN, which is also very important, is the initialization of
the radii for each RBF. There are few heuristics that are used for this problem and none of them use the information provided
by the output of the function, but only the centers or the input vectors positions are considered. In this paper, a new algorithm
to initialize the centers and the radii of an RBFNN is proposed. This algorithm uses the perspective of activation grades
for each neuron, placing the centers according to the output of the target function. The radii are initialized using the center’s
positions and their activation grades so the calculation of the radii also uses the information provided by the output of
the target function. As the experiments show, the performance of the new algorithm outperforms other algorithms previously
used for this problem. 相似文献
11.
神经网络泛化性能优化算法 总被引:3,自引:0,他引:3
基于提高神经网络泛化性能的目标提出了神经网络泛化损失率的概念,解析了与前一周期相比当前网络误差的变化趋势,在此基础上导出了基于泛化损失率的神经网络训练目标函数.利用新的目标函数和基于量子化粒子群算法的神经网络训练方法,得到了一种新的网络泛化性能优化算法.实验结果表明,将该算法与没有引入泛化损失率的算法相比,网络的收敛性能和泛化性能都有明显提高. 相似文献
12.
求解整数非线性规划结合正交杂交的离散PSO 算法 总被引:1,自引:0,他引:1
针对整数非线性规划问题,提出一种结合正交杂交的离散粒子群优化(PSO)算法.首先采用舍入取整方法,为了减少舍入误差,对PSO中的每个粒子到目前为止的最好位置进行随机修正,将基于正交实验设计的正交杂交算子引入离散PSO算法,以增强搜索性能;然后对PSO算法中的惯性权重和收缩因子采用动态调整策略,以提高算法的搜索效率;最后对一些不同维数的整数非线性规划问题进行数值仿真实验,实验结果表明了所提出算法的有效性. 相似文献
13.
14.
15.
针对基本粒子群优化算法对高维函数优化时搜索精度不高的缺陷,提出了一种动态粒子群优化算法。该算法采用了通过调节阈值对粒子运动轨迹进行动态改变的策略,使得粒子对周围环境的适应能力不受进化代数的影响,从而保证了算法在迭代后期仍具有较强的搜索能力。实验结果表明,与文献算法相比,该算法在处理高维函数优化时具有更强的寻优能力和更高的搜索精度。 相似文献
16.
This paper presents a hybrid niching algorithm based on the PSO to deal with multimodal function optimization problems. First, we propose to evolve directly both the particle population and memory population (archive population), called the P&A pattern, to enhance the efficiency of the PSO for solving multimodal optimization functions, and investigate illustratively the niching capability of the PSO and the PSOP&A. It is found that the global version PSO is disable, but the local version PSOP&A is able, to niche multiple species for locating multiple optima. Second, the recombination-replacement crowding strategy that works on the archive population is introduced to improve the exploration capability, and the hybrid niching PSOP&A (HN-PSOP&A) is developed. Finally, experiments are carried out on multimodal functions for testing the niching efficiency and scalability of the proposed method, and it is verified that the proposed method has a sub-quadratic scalability with dimension in terms of fitness function evaluations on specific MMFO problems. 相似文献
17.
粒子群优化(Particle Swarm Optimization,PSO)算法参数较少、搜索机制简单,故一直是智能优化算法研究和应用的重点。然而PSO有易早熟、搜索精度不高及搜索性能对参数依赖性强的缺陷。针对此特点,在基于仿真的优化框架下,基于多Agent对融合传统全局最佳和局部最佳的PSO算法人工生命模型进行了仿真,以混合优化算法为计算引擎,对PSO的参数选取进行了重点讨论。利用一系列benchmark函数为例,进行了仿真优化实验和分析,取得了较为满意的结果,从而说明了本思想方法的可行性与可信性。 相似文献
18.
In this paper, we introduce a new architecture of optimized Radial Basis Function neural network classifier developed with the aid of fuzzy clustering and data preprocessing techniques and discuss its comprehensive design methodology. In the preprocessing part, the Linear Discriminant Analysis (LDA) or Principal Component Analysis (PCA) algorithm forms a front end of the network. The transformed data produced here are used as the inputs of the network. In the premise part, the Fuzzy C-Means (FCM) algorithm determines the receptive field associated with the condition part of the rules. The connection weights of the classifier are of functional nature and come as polynomial functions forming the consequent part. The Particle Swarm Optimization algorithm optimizes a number of essential parameters needed to improve the accuracy of the classifier. Those optimized parameters include the type of data preprocessing, the dimensionality of the feature vectors produced by the LDA (or PCA), the number of clusters (rules), the fuzzification coefficient used in the FCM algorithm and the orders of the polynomials of networks. The performance of the proposed classifier is reported for several benchmarking data-sets and is compared with the performance of other classifiers reported in the previous studies. 相似文献
19.
提出了一种过滤微粒群优化算法并应用于虚拟企业的伙伴选择问题.该算法以优良适应值微粒取代部分不良适应值微粒,使算法具有过滤能力,加快了搜索速度,并保证收敛于全局最优解.仿真实验及与基本PSO算法的对比分析表明了FPSO算法的有效性. 相似文献