首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Materialia》2002,50(11):2825-2836
An iron aluminide alloy of base composition Fe-40Al has been prepared by mechanical alloying and processed using a variety of powder consolidation methods and heat treatments to produce a range of grain sizes and oxide dispersoid sizes. The strengths of these materials have been determined at room temperature and related to the various aspects of microstructure. Fine dispersoid particles may pin grain boundaries and help determine the fine grain size and contribute very significantly to the material strength. Grain size strengthening is shown to be a rather small component of the material strength, with the matrix strength being rather high for this intermetallic. The influence of other factors such as texture and the direction of application of stress (tension or compression) are also briefly discussed.  相似文献   

2.
The present work investigates Ni-nanodiamond and Ni-graphite composites produced by mechanical synthesis and subsequent heat treatments. Processing of nickel-carbon nanocomposites by this powder metallurgy route poses specific challenges, as carbon phases are prone to carbide conversion and amorphization. The processing window for carbide prevention has been established through X-ray diffraction by a systematic variation of the milling parameters. Transmission electron microscopy confirmed the absence of carbide and showed homogeneous particle distributions, as well as intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained largely unaffected by mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. The results on the annealed nanocomposites showed that milling with Ni accelerated graphitization of the carbon phases during heat treatments at 973 and 1073 K in both composites. At the finer scales, the nanocomposites exhibited a remarkable microhardness enhancement (∼70%) compared with pure nanostructured nickel. The Hall-Petch relation and the Orowan-Ashby equation are used to discuss strengthening mechanisms and the load transfer ability to the reinforcing particles.  相似文献   

3.
Al and different amounts of C and C–Cu mixtures were used to produce Al–C and Al–C–Cu powder samples by mechanical milling. Microhardness tests were carried out to evaluate the mechanical properties of the nanocomposites in the as-milled condition. In general, the measured values were considerably higher than pure Al. In order to determine the causes of this hardening, the crystallite size and dislocation density were measured by means of X-ray analyses coupled with a convolutional multiple whole profile (CMWP) fitting program and a comparison with atomic force microscopy (AFM) observations. In Al–C samples, the hardening is mainly due to the decrease of the crystallite size, however for the Al–C–Cu, an additional strengthening mechanism appears and it seems that it is due by a dispersion of graphite nanoparticles in the Al matrix. The strengthening contributions of dislocation density, crystallite size and particle dispersion were modeled by superposing of every single contribution to strengthening (via hardness analyses). We found a direct relationship between the mechanical properties and the nominal amount of C–Cu, where Cu apparently acts as C nanoparticles integration and dispersion agent.  相似文献   

4.
An extensive experimental study characterizing the sequence of events that lead to the formation of a very high density of Y–Ti–O solute nanoclusters (NC) in mechanically alloyed, hot isostatically pressed ferritic stainless steels is reported. Yttria dissolves in the Fe–14Cr–3W(0.4Ti) powders during mechanical alloying. The dissolved Y and O, and when present Ti, subsequently precipitate during hot consolidation. The number densities and volume fractions of the NC decrease, and their radii increase, with increasing consolidation temperature. The NC form at 850 and 1000 °C in milled alloys containing Y, both with and without Ti additions. The presence of Ti refines the NC, and both Ti and high milling energy are necessary for the formation of NC at the highest consolidation temperatures of 1150 °C. However, the precise structure and composition of the NC are not well understood. Indeed, their character varies, depending on the alloy composition and processing variables.  相似文献   

5.
Mechanical properties and microstructures of unidirectionally and tandem rolled alumina dispersion strengthened copper(ADSC) alloys under different conditions were investigated by tensile test, optical microscopy(OM), transmission electron microscopy(TEM) and scanning electron microscopy(SEM). For unidirectionally rolled ADSC alloys, their strengths and elongations in the longitudinal direction are higher than those in the transverse direction under both cold rolling and annealing conditions. Once fracture appears in their longitudinal stress--strain curves, sudden reduction of overall stress level before complete fracture can be observed in the transverse tensile curves. The anisotropy of mechanical properties for the ADSC alloy can be greatly improved by tandem cold rolling. And no sudden reduction of overall stress level appears in the stress--strain curves for tandem rolled ADSC alloys. The differences of their microstructures and tensile fractures were analyzed. In order to compare the differences of tensile fracture mechanism in different directions, longitudinal and transverse fracture models for unidirectionally rolled ADSC alloys were also introduced.  相似文献   

6.
The hardness measurement,optical microscopy (OM),and transmission electron microscopy (TEM) microstructure observation on the annealing behaviors of Cu-Al2O3 (2.25 vol.% and 0.54 vol.% Al2O3) and Cu-0.52vol.%Nb alloys were carried out. The results show that with the increase of annealing temperature,the hardness of Cu-Al2O3 alloys decreases slowly. No change of the fiber structure formed by cold rolling in the Cu-2.25vol.%Al2O3 alloy is observed even after annealing at 900℃and the higher dislocation density can still be observed by TEM. Less combination of fiber formed by cold rolling and subgrains are observed in the Cu-0.54vol.%Al2O3 alloy annealed at 900℃. With the increase of annealing temperature,the hardness of the Cu-0.52vol.%Nb alloy exhibits a general decreasing trend,and its falling rate is higher than that of the Cu-Al2O3 alloys,indicating that its ability of resistance to softening at elevated temperature is weaker than that of the Cu-Al2O3 alloys. However,when annealed at a temperature of 300-400℃,probably owing to the precipitation strengthening of niobium,the hardness of the Cu-0.52vol.%Nb alloy arises slightly. The fibers formed by cold rolling be-come un-clear and un-straight and have less combination,and considerably more subgrains are observed by TEM.  相似文献   

7.
The oxidation of six oxide dispersion strengthened (ODS) ferritic alloys was investigated at 1050 °C in air up to 200 h. Al plays the dominant role in improving the oxidation resistance of the ODS alloys. Cr and Y are of importance in forming the stable Al2O3 scale. To produce the dense alumina layer with enhanced adherence to the metal substrate, the concentrations of Al and Cr should be larger than 2 and 14 wt.%, respectively.  相似文献   

8.
氧化物弥散强化MGH956合金TIG焊缝气孔问题分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过X射线探伤和金相分析相结合的方法,对氧化物弥散强化(ODS)合金MGH956的TIG焊接气孔的产生机理、分布、数量及焊接工艺参数的影响进行了研究.结果表明,气孔的产生与ODS合金本身的制造工艺特点、弥散氧化物颗粒和焊缝组织有关;在焊缝的边缘发现许多小泡;焊缝气孔在焊缝两侧的熔合线附近呈链状分布,这是由熔池各部位的特...  相似文献   

9.
研究了具有粗、细两种不同晶粒组织状态的MGH956合金板材室温~1200℃拉伸及1100℃持久性能.采用扫描电镜和金相显微镜对拉伸和持久试样的断口形貌及纵剖面组织进行了检验,对比分析了两种板材不同温度下的强化因素、及变形和断裂模式.结果表明:正是由于强化因素、及变形和断裂模式上的不同,使得细晶板材的拉伸强度在低温高于粗晶板材,在高温则低于粗晶板材,以及细晶板材的持久强度大大低于粗晶板材;但两种板材从室温~ 1200℃的拉伸伸长率并无明显差异.  相似文献   

10.
Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100°C and hot corrosion at 900°C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.  相似文献   

11.
12.
Disks of a eutectic Cu-Ag alloy were processed by high-pressure torsion (HPT) up to 20 revolutions to reveal the microstructural evolution and mechanical properties. Both the Cu and Ag phases were thinned continuously with increasing numbers of revolutions. After 20 revolutions, the alternating Cu and Ag phases were significantly refined and became fibrous with dimensions as thin as 5 nm. The strain hardening behavior of the Cu-Ag alloy was characterized after different numbers of HPT revolutions, and a saturation microhardness was attained. It is shown that the tensile fracture mode changed from necking to fully brittle shearing with increasing numbers of revolutions, and some shear offsets with sizes of ∼5-20 μm were observed on the fracture surfaces. Based on the abnormal saturation microhardness value of the eutectic alloy, the strengthening mechanisms of various Cu-Ag alloys are discussed.  相似文献   

13.
R.C. Picu  R. Li 《Acta Materialia》2010,58(16):5443-5446
The functional form of the equation describing the superposition of contributions to the flow stress due to various strengthening mechanisms is analyzed. Considering that the superposition can be written as a sum to which each mechanism contributes through function f, that the dependence of the critical resolved shear stress on the density of obstacles to dislocation motion is given by function g, and that f and g have the same functional form for all strengthening mechanisms considered, it is shown that these two function are necessarily power functions, and their exponents are related. Furthermore, requiring that the superposition law is valid both at finite temperatures and at 0 K leads to an equivalent expression for the strain rate sensitivity and imposes restrictions on the way in which contributions of various mechanisms to the flow stress are evaluated at finite temperatures.  相似文献   

14.
This month, Journal of Metals presents the second part of a critical review of this field.  相似文献   

15.
以Cu-0.15%(质量分数)Al合金粉末为原料、Cu2O为氧化剂,采用内氧化-冷轧法制备Al2O3弥散强化铜合金,研究合金的组织与性能。结果表明:由内氧化-冷轧法制备的合金的σb520MPa、σ0.2/σb90%、电导率(IACS)也保持在80%以上;经950℃退火后,合金的σb400MPa;此合金具有高强、高导和优良的抗高温软化性能;冷轧态弥散强化铜合金的组织呈拉长变形的纤维状,试样断口分布有一定数量的韧窝;经950℃退火后,合金的纤维组织宽化,试样断口表面韧窝增多、变深,塑性提高。  相似文献   

16.
《Intermetallics》2007,15(2):108-118
A bulk dense nanostructured material, obtained by spark plasma sintering (SPS) of Y2O3 dispersion strengthened milled Fe–40Al powder, is characterized in detail using scanning (SEM) and transmission electron microscopies (TEM) in order to investigate the mechanisms of its microstructure formation. The sintered material displays a fairly heterogeneous microstructure that covers nano- and ultrafine together with large micrometric grains. The fine grains result from recovery and recrystallization, while the larger ones from grain growth or local melting. Under the present SPS conditions, large temperature differences in the range 570–670 °C, due to rapid heating–cooling and also to no holding stage applied, essentially account for such a structural heterogeneity. Controlling SPS of the milled powder thus provides a feasible processing route to get dense hetero-nanostructured material. In addition, complex oxide particles formed in the material are analyzed to be related to precipitation reaction and oxide evolution at different sintering temperatures.  相似文献   

17.
Modern understanding of possible mechanisms of crack growth in corrosion cracking of aluminium alloys immersed in various corrosion media such as aqueous solutions, saturated and undersaturated vapour, gaseous hydrogen, etc. is discussed in this review. The experimental data used as a basis to conclusions about the mechanisms of corrosion cracking in aluminium alloys are critically examined. A special emphasis is given to new methods to determining the effect of local anodic dissolution and hydrogen embrittlement in crack growth, i.e. the method of comparative tension and torsion tests deformations of types I and III, and the method based on evaluating ambiguous effect of cathodic polarization on crack growth.  相似文献   

18.
19.
This article examines progress recently made in the strengthening of aluminum alloys by heat treatment. The treatment maximizes strength while leaving the alloy with relatively high corrosion resistance.VILS. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 30–35, November, 1994.  相似文献   

20.
《Intermetallics》1999,7(3-4):423-436
The strategy of oxide-dispersion strengthening has recently been applied to intermetallic compounds in order to improve their creep resistance at high temperatures. In this paper, we describe selected results of an extensive transmission electron microscopy (TEM) study of the dislocation structures and the particle/dislocation configurations in Oxide-dispersion strengthed (ODS) NiAl, Ni3Al and FeAl. High-resolution TEM was employed to characterise the particle/matrix interfaces, and in situ high-temperature deformation in a high-voltage TEM provided insight into the dynamic processes of dislocation detachment from particles. The dissociation of the lattice dislocations into superpartials in FeAl and Ni3Al has important consequences for the particle/dislocation interactions: the superpartials are observed to surmount, and sometimes detach from, the particles separately, which points to a cooperative effect between the partials. The in situ experiments show, in addition, that the climb step is rapid compared with dislocation detachment from the particle. These observations are discussed in the light of our recent theoretical model of creep strength in ordered ODS materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号