首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
王玉琨  王狂飞 《铸造》2007,56(5):505-508,512
利用溶质扩散控制模型对Ti-Al合金定向凝固初始阶段变速冷却过程中胞/枝晶转变过程进行了数值模拟。在给定的冷却速率下,枝晶臂间距大于胞晶臂间距,而在过渡区,枝晶间距达到最大。另外,模拟结果也显示,晶核数量对柱状晶间距产生影响,随着植入晶核数量的增加,柱状晶间距非均匀化程度明显减小。出现过渡区的原因与枝晶生长所引起固/液界面前沿成分波动有关。模拟与试验结果吻合较好。  相似文献   

2.
采用基于溶质扩散控制模型CA方法,对Ti-Al合金定向凝固过程中柱状晶/等轴晶转变过程进行了数值模拟。模拟结果表明,温度梯度、抽拉速度对柱状晶/等轴晶转变影响定性地符合Hunt解析解。横向晶核间距影响比纵向大;形核过冷度增加,柱状晶/等轴晶转变推迟;柱状晶间距不仅与温度梯度、抽拉速度有关,而且可通过激活预置晶核使其生长为柱状晶而得以调整,特别是温度梯度在30~50K/mm之间,形核有较强的调节柱状晶间距的作用。  相似文献   

3.
张敏  徐蔼彦  汪强  李露露 《焊接学报》2016,37(2):5-8,54
基于元胞自动机方法建立了枝晶生长的数值模型,应用该模型模拟了Fe-C合金焊接熔池凝固期间柱状晶向等轴晶(CET)转变过程中枝晶生长形貌与溶质浓度分布状况. 模拟过程主要考虑不同扰动振幅和冷却速率对柱状晶向等轴晶转变的影响. 结果表明,随着时间步长增大,晶粒数逐渐增多,最终趋于稳定值;当冷却速率增加时,生长速度增大,枝晶生长的越充分,显微偏析越严重,而CET转变所需时间越短;当扰动振幅增大时,一次枝晶生长的越细,二次、三次枝晶竞争越激烈.  相似文献   

4.
建立了用于模拟立方晶系合金三维枝晶生长的改进元胞自动机模型。该模型将枝晶尖端生长速率、界面曲率和界面能各向异性的二维方程扩展到三维直角坐标系,从而能够描述三维枝晶生长形貌演化。应用本模型模拟在确定温度梯度和抽拉速度条件下三维柱状晶生长过程的一次臂间距调整机制和不同择优取向柱状晶之间的竞争生长。使用NH4Cl?H2O透明合金进行凝固实验,模拟结果和实验结果吻合较好。  相似文献   

5.
徐吉祥  许庆彦  程锦  张虎  柳百成 《铸造》2012,61(12):1415-1421
考虑二元合金包晶反应和包晶转变过程,采用改进的CA方法建立了Ti-Al合金定向凝固过程中的组织演变数值计算模型,对液态金属冷却定向凝固过程中Ti-47.8Al(原子分数,%)合金包晶相的形成和具有不同优先生长方向的柱状晶的竞争生长进行了模拟。模拟了40 K/cm和80 K/cm两种温度梯度下合金的组织演化,并与相应的Ti-47Al-2Cr-2Nb合金定向凝固试验结果进行对比。结果表明,较之40 K/cm,温度梯度为80 K/cm时组织更快地进入稳定生长区,过渡区相对较短,而且柱状晶区晶粒的连续性更好,一次枝晶臂间距减小。  相似文献   

6.
利用OM、EM研究了Mg含量对金属型铸造Al-Mg合金微观组织和枝晶形貌的影响,并用EBSD(电子背散射衍射)研究了组织中柱状晶的生长取向.结果表明:不同成分的合金其组织主要由柱状晶区和等轴晶区组成,纯铝的柱状晶区最大,随着Mg含量的增加柱状晶区的宽度逐渐减小,当Mg含量达到15%时柱状晶区完全消失;一次枝晶间距则随Mg含量的增加而持续增加,且枝晶形貌由胞状晶转变为柱状树枝晶,最后变为等轴晶;Mg元素对Al-Mg合金中初生晶的生长取向有一定的影响,在Mg含量为2%时,枝晶生长取向以[100]晶向为主,同时还伴有[011]、[120]、[230]晶向,而Mg含量为10%时,枝晶的生长取向为[001]晶向.  相似文献   

7.
建立二元合金树枝晶生长的二维元胞自动机模型,模拟丁二腈2.5%(质量分数)乙醇定向凝固枝晶生长和一次枝晶间距选择过程。模拟结果表明:在给定的凝固条件下,定向凝固一次枝晶间距可在一个范围内变化,其具体取值与凝固历史具有相关性。在相同的温度梯度和不同冷却速度下,模拟给出的一次枝晶间距上、下限与实验结果吻合较好,详细分析影响定向凝固一次枝晶间距上下限的因素。结果表明:在给定凝固条件和合金系条件下,液相中无对流,影响一次枝晶间距上下限的主要因素是界面能和溶质扩散系数。  相似文献   

8.
通过构建元胞自动机与有限差分耦合的CA-FD(cellular automaton-finite difference)模型,实现Ni-Cr二元合金焊接熔池柱状枝晶生长过程的模拟,研究熔池边缘柱状晶的生长过程以及该过程中的溶质浓度分布形态.模拟结果再现了焊接熔池中二次、三次枝晶的生长,枝晶间的竞争生长以及晶界偏析等微观现象.基于模拟结果深入分析了焊接熔池中枝晶生长的特点,同时对溶质浓度场进行了定量分析.对模拟结果的分析表明,焊接熔池中枝晶间竞争生长激烈,枝晶形态复杂,枝晶偏析和晶界偏析显著.  相似文献   

9.
基于元胞自动机方法构建了枝晶生长数值模型,并将其应用于Al-Cu二元合金凝固过程的模拟。在该模型中,枝晶尖端生长速度模型基于溶质守恒建立。模拟过程中重点考虑不同冷却速率及形核条件对柱状树枝晶形态与溶质偏析的影响。计算结果表明,凝固过程中溶质易于富集在枝晶臂之间的封闭或半封闭区域。同时,随着冷却速率加大,晶界偏析变得更为显著。形核密度在一定程度上影响着枝晶形态,特别是影响着二次和三次枝晶的生长。  相似文献   

10.
对流作用下镁合金凝固组织演变的数值模拟   总被引:1,自引:0,他引:1  
基于改进元胞自动机模型和流场传输模型,模拟对流作用下的镁合金等轴晶和柱状晶组织演变过程。采用改进元胞自动机模型模拟具有密排六方结构的镁合金的枝晶生长;采用投影法求解流场传输模型耦合质量守恒方程、动量守恒方程和溶质扩散方程。不仅模拟了镁合金中单枝晶、多枝晶和柱状晶在对流作用下的生长规律,还对不同入流速度下枝晶凝固前沿的溶质分布进行定量分析。模拟结果表明:迎流端枝晶生长较快,二次枝晶臂较为发达;背流端生长缓慢,二次枝晶臂较细小或没有二次晶臂。对流作用还会改变等轴枝晶扩散层的分布,在背流端扩散层呈拖曳特性。因此,对流作用对镁合金凝固组织的演变有重要影响。  相似文献   

11.
An understanding of dendrite growth is required in order to improve the properties of castings. For this reason, cellular automaton?finite difference (CA?FD) method was used to investigate the dendrite growth during directional solidification (DS) process. The solute diffusion model combined with macro temperature field model was established for predicting the dendrite growth behavior. Model validation was performed by the DS experiment, and the cooling curves and grain structures obtained by the experiment presented a reasonable agreement with the simulation results. The competitive growth of dendrites was also simulated by the proposed model, and the competitive behavior of dendrites with different misalignment angles was also discussed in detail. Subsequently, 3D dendrites growth was also investigated by experiment and simulation, and both were in good accordance. The influence on dendrites growth of initial nucleus was investigated by three simulation cases, and the results showed that the initial nuclei just had an effect on the initial growth stage of columnar dendrites, but had little influence on the final dendritic morphology and the primary dendrite arm spacing.  相似文献   

12.
采用宏观-微观耦合的元胞自动机(CAFE)方法,研究了不同抽拉速率对螺旋选晶器的选晶行为和晶体取向演变的影响,并通过实验对仿真结果进行了验证.结果 表明:在相同的抽拉速率下,随着与激冷面距离的增大,枝晶数目逐渐减少,一次枝晶臂间距逐渐增大.随着抽拉速度由2 mm/min增加到8mm/min,一次枝晶臂间距逐渐减小,枝晶...  相似文献   

13.
The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model. The obtained results have shown that under high thermal gradients the stable primary spacing can be adjusted via branching or competitive growth. For dendritic structures formed under a high thermal gradient, the secondary dendrite arms are developed not very well in many cases due to the branching mechanism under a constrained dendritic growth condition. Furthermore, it has been observed that, with increasing pulling velocity, there exists a cell/dendrite transition region consisting of cells and dendrites,which varies with the thermal gradient in a contradicting way, i.e. increase of the thermal gradient leading to the decrease of the range of the transition region. The simulations agree reasonably well with experiment results.  相似文献   

14.
Guo  Zhao  Zhou  Jian-xin  Yin  Ya-jun  Zhang  Dong-qiao  Ji  Xiao-yuan  Shen  Xu 《中国铸造》2017,14(5):398-404
Casting microstructure evolution is difficult to describe quantitatively by only a separate simulation of dendrite scale or grain scale, and the numerical simulation of these two scales is difficult to render compatible. A three-dimensional cellular automaton model couplling both dendritic scale and grain scale is developed to simulate the microstructure evolution of the nickel-based single crystal superalloy DD406. Besides, a macro–mesoscopic/microscopic coupling solution algorithm is proposed to improve computational efficiency. The simulation results of dendrite growth and grain growth of the alloy are obtained and compared with the results given in previous reports. The results show that the primary dendritic arm spacing and secondary dendritic arm spacing of the dendritic growth are consistent with the theoretical and experimental results. The mesoscopic grain simulation can be used to obtain results similar to those of microscopic dendrites simulation. It is indicated that the developed model is feasible and effective.  相似文献   

15.
Despite the excellent high temperature mechanical properties of the Ni3Al intermetallic compound, its application is still limited due to its inherently weak grain boundary. Recent research advances have demonstrated that the tensile ductility can be enhanced by controlling the grain morphology using a directional solidification. In this study, a series of directional solidification experiments were carried out to increase both the tensile ductility and the strength of Ni3Al alloys by arraying either the ductile phase of γ-Ni-rich dendrite fibers or the hard phase of β-NiAl dendrite fibers in the γ′-Ni3Al matrix. The dendrite arm spacing could be controlled by the solidification rate, and the volume fraction of the γ or β phase could be altered by the Al content, ranging from 23 at.% to 27 at.%. With an increasing Al content, the γ dendritic microstructure was transformed into the β dendrite in the γ′ matrix, thereby reducing the tensile ductility by increasing the volume fraction of brittle β dendrites in the γ′ matrix. With an increasing solidification rate, the dendrite arm spacing decreased and the tensile properties of Ni3Al varied in a complex manner. The microstructural evolution affecting the tensile behavior of directionally solidified Ni3Al alloy specimens with different solidification rates and Al contents is discussed.  相似文献   

16.
The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel718, under different cooling rates during directional solidification, ware investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS) was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate, but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.  相似文献   

17.
The heat transfer and solidification microstructure evolution during continuous casting were experimentally studied in this work. A new approach to physically simulate the steel solidification behavior during continuous casting was developed. Six steel grades with different solidification mode were introduced to elucidate the carbon equivalent dependent mold heat flux, prior austenite grain size and secondary dendrite arm spacing. It is found that the non-steady mold heat fluxes in the experiment against time for all steel grades are comparative to that versus distance in practical continuous casting. Due to the occurrence of L→L+δ→δ+γ→γ transformation with the largest amount of volume contraction in hypo-peritectic steel, it shows the lowest mold heat flux among these six steel grades. It is also demonstrated from the solidification microstructure results that the prior austenite grain size and secondary dendrite arm spacing in the physical simulation are in good agreement with those in continuously cast strand. In addition, the steel with a higher temperature for the onset of δ→γ transformation reveals the larger prior austenite grains resulted from the higher grains growth rate in the post solidification process.  相似文献   

18.
Abstract

The solidification of cast components is a complex and important process as this is the moment when the final properties are established. For hypoeutectic grey iron, solidification starts with nucleation and growth of the primary austenite followed by the eutectic reaction forming eutectic cells. In this work, the microstructure and significance of the different constituents formed during solidification has been examined. It was found that the size of the eutectic cells is a function of secondary dendrite arm spacing (SDAS). The SDAS, on the other hand, was found to depend on the solidification time and hence the growth rate of the dendrites. The effect of chemical composition on SDAS and eutectic cell size was found to depend on cooling rate. It is suggested that the relationship between the eutectic cells and dendrite arm spacing is based on segregation effects and the nucleating capacity of the melt.  相似文献   

19.
The microstructure evolution of grains with different orientations during directional solidification is investigated by the phase-field method. For converging dendrites, in addition to the usually accepted overgrowth pattern wherein the favorably oriented dendrites block the unfavorably oriented ones, the opposite pattern of overgrowth observed in some recent experiments is also found in our simulations. The factors which may induce this unusual overgrowth are analyzed. It is found that in addition to the difference in tip undercooling, the solute interaction of converging dendrites, which has been ignored in the classical theoretical model, also has a significant effect on the nature of the overgrowth at low pulling velocities. Solute interaction can retard the growth of dendrites at the grain boundary (GB) and induce a lag of these dendrites relative to their immediate neighbors, which gives the unfavorably oriented dendrite the possibility to overgrow the favorably oriented one. However, this unusual overgrowth only occurs when the spacing between the favorably oriented GB dendrite and its immediate favorably oriented neighbor decreases to a certain level through lateral motion. These findings can broaden our understanding of the overgrowth mechanism of converging dendrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号