首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of tungsten on creep behavior and microstructural evolution was investigated for tempered martensitic 9Cr steels with various W concentrations from 0 to 4 wt pct. The creep rupture testing was carried out at 823, 873, and 923 K for up to 54 Ms (15,000 hours). The creep and creep rupture strength increased linearly with W concentration up to about 3 wt pct, where the steels consisted of the single constituent of the tempered martensite. It increased only slightly above 3 wt pct, where the matrix consisted of the tempered martensite and δ-ferrite. The minimum creep rate was described by a power law. The apparent activation energy for the minimum creep rate showed a tendency similar to the W concentration dependence of the creep-rupture strength and was larger than the activation energy for self-diffusion at high W concentrations above 1 wt pct. The martensite lath microstructure with fine carbides along lath boundaries was responsible for a high resistance to creep deformation. With increasing W con- centration, the martensite lath microstructure became stabilized, which decreased the minimum creep rate and increased the apparent activation energy for the minimum creep rate.  相似文献   

2.
The transformations of a high-strength 9Ni-Cr-Mo-V steel were characterized as a function of cooling rate by dilatometry, microhardness measurements, and microstructural characterization. The results demonstrate that this steel is extremely insensitive to changes in cooling rate, generating a duplex microstructure of coarse autotempered martensite within a matrix of fine lath martensite at nearly all cooling rates. The coarse autotempered martensite is observed even at very slow cooling rates, although the lath martensite becomes replaced by lath (or bainitic) ferrite.  相似文献   

3.
The effect of quenching, tempering, cold-rolling, and aging treatments, which produce different dislocation substructures and different carbide distributions, on the creep-deformation behavior is investigated for a tempered martensitic 9Cr-1W steel at 873 K, mainly. The creep rate vs time curves indicate transient creep, where the creep rate decreases with time, and accelerating creep, where the creep rate increases with time. The minimum creep rate is closely correlated with the onset time of acceleration creep and is inversely proportional to the duration of the transient creep region. The onset of acceleration creep shifts to shorter times for the specimens subjected to the quenching, 20-hour tempering (long-term tempering) at 1023 K, and cold-rolling treatments than that for the specimen subjected to the standard quenching and tempering (QT) treatment. The onset of acceleration creep is closely correlated with the migration of lath or subgrain boundaries, causing the coarsening of laths or subgrains. Dislocation cells produced by cold rolling are free of M23C6 carbides. The migration and recovery of dislocation cells significantly promote the onset of acceleration creep. The preferential distribution of M23C6 carbides along lath boundaries is effective for the retardation of the onset of acceleration creep for up to longer times by the stabilization of lath boundaries. In the acceleration creep region, after reaching a minimum creep rate, the logarithm of the creep rate increases linearly with strain for a wide range of strains. The time to rupture (tr) is inversely proportional to the minimum creep rate times the acceleration of the creep rate (d ln /dε) in the acceleration creep region, but is not proportional to only the minimum creep rate, as given by
This equation is derived on the basis of the exponential function of strain in the acceleration creep region.  相似文献   

4.
将30MnB5热成形钢进行淬火和回火处理,利用扫描电镜、透射电镜、能谱仪和拉伸性能检测等方法研究了不同回火温度后的显微组织和力学性能变化.经200℃保温2 min回火后热成形钢的综合力学性能最佳,抗拉强度为1774 MPa,总伸长率为8%,强塑积达14 GPa·%以上,该性能满足热成形后作为汽车结构件的使用要求;并且随着回火温度的升高,力学性能呈非单调性变化.200℃低温回火后,主要为板条马氏体和ε碳化物,位错密度略有降低,析出的ε碳化物粒子呈针状分布在马氏体板条内,长度方向大小为100 nm左右,并与位错发生钉扎作用.随着回火温度的升高,板条马氏体发生回复和再结晶,板条边界逐渐模糊,并向等轴状铁素体转变,位错密度显著降低,ε碳化物逐渐向低能态的近球形渗碳体转变并粗化至200 nm左右,对位错的钉扎作用也随之减弱.   相似文献   

5.
通过DIL805A热分析仪、扫描电子显微镜、电子背散射衍射、透射电子显微镜、力学分析等方法研究Mn对中锰耐磨钢组织形态、相变及力学性能的影响.随着Mn的质量分数以2%的增量从3%提高到9%,室温奥氏体含量逐渐增多,抗拉强度及硬度逐渐降低,抗拉强度和室温奥氏体体积分数都在5%到7%时变化明显,马氏体与奥氏体的位向关系发生改变,马氏体形态类型逐渐由亚结构以位错为主的板条状α马氏体变化为亚结构以位错、相变内孪晶和层错为主的束状细片α马氏体和细片状ε马氏体.   相似文献   

6.
The microstructure of three specimens of the martensitic steel X22CrMoV12-1 which had been subjected to long-term cyclic creep at 873 K with intermittent phases of unloading (stress ratio R = 0) and compression (R = ?1) was quantified by electron microscopy with regard to carbides, dislocations and pores. The laws of time dependent coarsening of carbides and strain controlled growth of subgrains found for monotonic creep hold also for cyclic creep. The longer time it takes cyclic creep to reach a given strain leads to a growth advantage of carbides compared to monotonic creep. The microstructural model of plastic deformation previously developed for monotonic creep on X20(22)CrMoV12-1 allows to calculate the cyclic creep acceleration due to this advantage in carbide growth.  相似文献   

7.
The microstructural evolution and mechanical property of 00Cr13Ni5Mo2supermartensitic stainless steel(SMSS)subjected to different heat treatments were investigated.Room tensile tests,hardness tests,scanning electron microscopy,transmission electron microscopy and X-ray diffraction were conducted on the heat-treated steels.It is found that the microstructure of the heat-treated steel is composed of tempered lath martensite,retained austenite andδ-ferrite.The austenitizing temperature and tempering temperature have a significant effect on the microstructural changes,which leads to the complex variations of mechanical properties.The fine tempered lath martensite and more dispersed reversed austenite in the microstructure facilitate improving the comprehensive mechanical properties of the studied steel.The optimal heat treatment process of 00Cr13Ni5Mo2SMSS is obtained by austenitizing at 1 000℃for 0.5h+air cooling followed by tempering at 630℃for 2h+air cooling,where the excellent combination of tensile strength,elongation and hardness can be achieved.  相似文献   

8.
利用扫描电镜、透射电镜和硬度测试等方法研究了不同退火工艺对 AMS 6308钢硬度及组织的影响。结果表明,提高退火温度,马氏体板条内位错密度降低,M6 C 的尺寸逐渐增加,硬度下降,但在750℃以上退火,进入二相区,空冷后产生二次马氏体,硬度回升。延长退火时间,马氏体板条回复逐渐充分,硬度开始下降较快,16 h后组织变化不明显,M6 C 的含量变化不大,硬度变化也不大。退火软化程度主要受板条内位错密度的下降以及M6 C 的粗化控制。推荐退火温度选择700~720℃,退火时间不低于16 h,720℃退火软化效果最佳。  相似文献   

9.
Laser transformation hardening of tempered 4340 steel   总被引:5,自引:0,他引:5  
A CO2 laser with a fixed laser power of 1.8 KW was employed to harden the surface of some AISI 4340 steel specimens, with a scan rate from 5 to 10 mm/s. The influence of scan rates and tempering treatments of the alloy on the hardness profile and microstructure of the laserhardened zone was analyzed. Microstructures in the hardened zone consisted of mainly lath and twinned martensites. However, depending on the scan rate, autotempered martensite has also been found. In the transition zone of laser-treated specimens, partially dissolved carbides with austenite envelopes and/or austenite islands in a matrix of martensite were observed. The time required for complete carbide dissolution into austenite during laser treatment depended on the tempering conditions. A lower tempering temperature of the alloy produced a deeper hardened zone and a narrower transition zone in the hardness profile. A simple mathematical estimation of the hardness profile, based on the carbon diffusion distance in austenite, was performed. The calculated results are in reasonably good agreement with the measured hardness profiles and the microstructural observations in the laser transformation hardening process. Formerly Graduate Research Assistant, Institute of Materials Science and Engineering, National Taiwan University  相似文献   

10.
Light and electron microscopy have been used to determine the main structural differences between the two major types of martensite in ferrous alloys. In the martensite that forms in dilute alloys of iron, the basic transformation unit takes the shape of a lath, and hence the term lath martensite is appropriate for identifying this morphology. Each lath is the result of a homogeneous shear, and successive shears produce a packet of parallel laths containing a high density of tangled dislocations. The other type, plate martensite, differs in the shape taken by a transformation unit and its transformation sequence is characterized by nonparallel plate formation. Investigation of a large number of binary ferrous systems shows that alloy composition and the transformation temperature influence the transition from lath to plate martensite. These two factors are discussed in terms of their possible effects on the plastic deformation mechanisms which must occur in the parent austenite and product martensite during transformation.  相似文献   

11.
The influence of heating rate on the annealing and transformation behavior is investigated in TRIP steel having martensite as the starting microstructure. A higher heating rate preserves the hierarchical structure of the initial microstructure before starting the reverse transformation. As the heating rate increases, the reversely transformed austenite has a propensity to develop a fine lath morphology, a consequence of the retention of pre-existing austenite and its growth along the lath boundary.  相似文献   

12.
Structural refinement by cold rolling (10 to 80?pct reductions) of interstitial free (IF) steel containing Mn and B has been investigated from samples with different initial structures: (a) lath martensite, (b) coarse ferrite (grain size 150???m), and (c) fine ferrite (22???m). Unalloyed IF steel with a coarse grain size (120???m) has also included based on a previous study. Deformation microstructures and structural parameters have been analyzed by transmission electron microscopy and electron backscatter diffraction, and mechanical properties have been characterized by hardness and tensile testing. At low to medium strains, lath martensite transforms into a cell block structure composed of cell block boundaries and cell boundaries with only a negligible change in strength. At medium to large strains, cell block structures in all samples refine with increasing strain and the hardening rate is constant (stage IV). A strong effect of the initial structure is observed on both the structural refinement and the strength increase. This effect is largest in lath martensite and smallest in unalloyed ferrite. No saturation in structural refinement and strength is observed. The discussion covers the transformation of lath martensite into a cell block structure at low to medium strains where the driving force is suggested to be a decrease in the dislocation line energy. Medium to large strain-hardening mechanisms are discussed together with structure-strength relationships assuming additive stress contributions from dislocations, boundaries, and elements in solid solution. Good agreement is found between flow stress predictions and stress values observed experimentally both in the initial undeformed martensite and in deformed samples.  相似文献   

13.
Structural changes in a 9 pct Cr martensitic steel during a creep test at 923 K (720 °C) under the applied stress of 118 MPa were examined. The tempered martensite lath structure (TMLS) was characterized by M23C6-type carbide particles with an average size of about 110 nm and MX-type carbonitrides with a size of 40 nm. The M23C6 particles were located on the packet/block/lath boundaries, whereas the MX precipitates were distributed homogeneously throughout TMLS. TMLS in the grip portion of the crept specimen changed scarcely during the tests. In contrast, the structural changes in the gauge section of the samples were characterized by the evolution of relatively large subgrains with remarkably lowered density of interior dislocations within former martensite laths. The formation of a well-defined subgrain structure in the gauge section was accompanied by the coarsening of M23C6 carbides and precipitations of Laves phase during creep. The most pronounced structural changes occurred just at the beginning of the tertiary creep regime, which was interpreted as a result of the change in the mechanism of grain boundary pinning by precipitates.  相似文献   

14.
The transformation behavior and microstructural evolution of the as-deposited weld metal from an ultra-low-carbon (ULC) weldment were characterized by dilatometry, optical microscopy, transmission electron microscopy, and microhardness measurements. These results were used to construct a continuous cooling transformation (CCT) diagram for this weld metal. The major microconstituents observed in this ULC weldment were (in order of decreasing cooling rate) coarse autotempered martensite, fine lath martensite, lath ferrite, and degenerate lath ferrite. No polygonal ferrite was observed. These results were also used to develop criteria to differentiate between the two predominant microstructures in these ULC steels, lath martensite, and lath ferrite, which can look quite similar but have very different properties.  相似文献   

15.
Microstructural evolution of modified 9Cr-1Mo steel   总被引:1,自引:0,他引:1  
The tempering and subsequent annealing of modified 9Cr-lMo steel have been investigated to determine the influence of trace amounts of V and Nb on the sequence of precipitation processes and to identify the basis for the enhanced high-temperature strength compared to the standard 9Cr-lMo composition. Air cooling (normalizing) from 1045 °C results in the precipitation of fine (Fe, Cr)3C particles within the martensite laths. Additional carbide precipitation and changes in the dislocation structure occur during the tempering of martensite at 700 °C and 760 °C after normalizing. The precipitation of M23C6 carbides occurs preferentially at lath interfaces and dislocations. The formation of Cr2C was detected during the first hour of tempering over the range of 650 °C to 760 °C but was replaced by V4C3 within 1 hour at 760 °C. During prolonged annealing at 550 °C to 650 °C, following tempering, the lath morphology remains relatively stable; partitioning of the laths into subgrains and some carbide coarsening are evident after 400 hours of annealing at 650 °C, but the lath morphology persists. The enhanced martensite lath stability is attributed primarily to the V4C3 precipitates distributed along the lath interfaces and is suggested as the basis for the improved performance of the modified 9Cr-lMo alloy under elevated temperature tensile and creep conditions.  相似文献   

16.
The recently developed “quenching and partitioning” heat treatment and “quenching‐partitioning‐tempering” heat treatment are novel processing technologies, which are designed for achieving advanced high strength steels (AHSS) with combination of high strength and adequate ductility. Containing adequate amount of austenite phase is an important characteristic of the above steel, and the partitioning treatment is a key step in Q&P or Q‐P‐T process during which the austenite phase is enriched with carbon and achieves thermal stability. However, the microstructural evolution of the steel during the partitioning process is rather complicated. In present study, evolution of complex microstructure in a low carbon steel containing Nb during the Q‐P‐T process has been studied in detail. The microstructural evolution of the steel was investigated in terms of X‐ray diffraction, scanning electron microscope and transmission electron microscope. The experimental results show that the Nb‐microalloyed steel demonstrates a complex multiphase microstructure which consists of lath martensite with high dislocation density, retained austenite, alloy carbide, transition carbide, and a few twin martensite after the Q‐P‐T process. The experimental results can be helpful for the design of Q‐P‐T heat treatment and for the control of mechanical properties of Q‐P‐T steel.  相似文献   

17.
Mechanical experiments and transmission electron microscope (TEM) observations indicate that single-phase γ-TiAl does exhibit primary, secondary, and inverse creep, but not steady-state creep. Constant stress creep tests of γ-Ti-51Al-2Mn conducted at 550 °C, 597 °C, and 703 °C have been interrupted at different stages in the creep process. The TEM observations of these specimens were used to document the microstructural evolution that occurs during creep. Superdislocation motion was activated and subsequently exhausted during primary creep. Ordinary dislocations were observed to be pinned during primary creep, but with time, these dislocations began to bow past their pinning points. The extended region of inverse creep has been related to the bowing and multiplication of these ordinary dislocations. Quantitative measurements of dislocation density were performed, and while the density of superdislocations remained constant, the density of ordinary dislocations increased by an order of magnitude during the life of a creep test. The acceleration in the creep rate has been related to this increase in the density of ordinary dislocations, but the change in dislocation density was not high enough to account for the increase in the creep rate. This suggests that both the mobility and density of ordinary dislocations increase as creep progresses. This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformations Committees.  相似文献   

18.
The microstructure and creep behavior of a 3 pct Co modified P911 steel and standard P911 steel were examined. It was shown that the nanoscale M23Ccarbides and MX carbonitrides in the 3 pct Co modified P911 steel are not susceptible to significant coarsening under creep conditions. Also, coarsening simulations of M23Cparticles were performed for both steels. The rates of lath and particle coarsening in the P911 + 3 pct Co steel are remarkably lower than those in the P911. Increased stability of a tempered martensite lath structure in the 3 pct Co modified P911 steel provides enhanced creep resistance at an exceptionally high temperature of 923 K (650 °C).  相似文献   

19.
18Ni (300) maraging steel possessing lath martensite structure was deformed by four passes of equal-channel angular pressing (ECAP) at ambient temperature. Line profile analysis (LPA) of X-ray diffraction (XRD) patterns identified strong strain anisotropy and remarkable increases in the relative fraction of screw dislocations after ECAP. The strain anisotropy was reasonably accounted for by the anisotropy of elastic constants. Domination of screw dislocations in the deformed structure was attributed to the preferred annihilation of edge dislocations in the early stages of deformation along with the difficulties for annihilation of screw dislocations by cross slipping. Cobalt addition was mainly assumed to make cross slipping difficult by reducing stacking-fault energy and favoring short-range ordering.  相似文献   

20.
 通过对国产T23钢550 ℃、600 ℃和650 ℃的持久试样显微组织的分析,研究了T23钢高温蠕变过程中的组织演变及其对性能的影响。结果表明,在高温蠕变过程中,T23钢贝氏体铁素体基体和小岛中的马氏体将发生回复和再结晶,位错密度下降,M23C6碳化物不断粗化,并且有少量M23C6转变为M6C。蠕变断裂时间较短时,M23C6碳化物粗化对性能下降起主要作用,随蠕变断裂时间延长,贝氏体铁素体基体和小岛中马氏体的回复、再结晶对性能下降的影响增大。温度较高时,回复及再结晶开始较早,对性能下降的影响提前。650 ℃时,T23钢的组织演变和性能下降过快,应尽量避免在此温度下使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号