首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-power broad-area InGaNAs/GaAs quantum-well (QW) edge-emitting lasers on GaAs substrates in the 1200 nm range are reported. The epitaxial layers of the InGaNAs/GaAs QW laser wafers were grown on n+-GaAs substrates by using metal-organic chemical vapor deposition (MOCVD). The thickness of the InGaNAs/GaAs QW layers is 70 Å/1200 Å. The indium content (x) of the InxGa1−xNyAs1−y QW layers is estimated to be 0.35-0.36, while the nitrogen content (y) is estimated to be 0.006-0.009. More indium content (In) and nitrogen content (N) in the InGaNAs QW layer enables the laser emission up to 1300 nm range. The epitaxial layer quality, however, is limited by the strain in the grown layer. The devices were made with different ridge widths from 5 to 50 μm. A very low threshold current density (Jth) of 80 A/cm2 has been obtained for the 50 μm × 500 μm LD. A number of InGaNAs/GaAs epi-wafers were made into broad-area LDs. A maximum output power of 95 mW was measured for the broad-area InGaNAs/GaAs QW LDs. The variations in the output powers of the broad-area LDs are mainly due to strain-induced defects the InGaNAs QW layers.  相似文献   

2.
Zinc-blende BxGa1−xAs alloys have been successfully grown on exactly oriented (0 0 1)GaAs substrates using triethylboron, trimethylgallium and arsine sources. The growth has been accomplished in a vertical low-pressure metalorganic chemical vapor deposition (LP-MOCVD) reactor. Boron incorporation behaviors have been extensively studied as a function of growth temperature and gas-phase boron mole fraction. The evolution of surface morphology was also observed.The maximum boron composition of 5.8% is obtained at the optimum growth temperature of 580 °C. RMS roughness over the surface area of 1×1 μm2 is only 0.17 nm at such growth conditions. Based on the experimental results, it has been clearly shown that boron incorporation will decrease significantly at higher temperature (>610 °C) or at much lower temperature (?550 °C).  相似文献   

3.
Resonant quasi-level lifetime of the lowest quasi-bound state localized within the quantum well region of a InGaAs/GaAs double barrier resonant tunneling structure have been analytically calculated for three different GaAs substrate orientations such as (0 0 1), (3 1 1)A and (1 1 1)A. The calculation is based on the solution of the time-independent Schrödinger equation and takes into account the effective mass changes between the well and barrier materials. A significant dependence of the ground state energy and its associated lifetime on the effective masses of the well and barrier layers, indium concentration in the well InxGa1−xAs material, which is associated to the barrier height, and GaAs substrate orientation has been observed. We believe that the structure grown on GaAs (1 1 1)A substrate is more useful for developing new resonant tunneling two-dimensional (2D) devices. Finally, the coupling effect between transverse and longitudinal wave vector has also been investigated. With increasing the transverse wave vector the lowest energy and its associated lifetime decrease and this for the different GaAs substrate orientations.  相似文献   

4.
The growth of InxGaj1−xAs (x = 0.13–0.25) on GaAs by chemical beam epitaxy (CBE) and laser-modified CBE using trimethylindium (TMIn), triethylgallium (TEGa), and tris-dimethylaminoarsenic (TDMAAs) has been studied. Reflection high-energy electron diffraction measurements were used to investigate the growth behavior of InGaAs at different conditions. X-ray rocking curve and lowtemperature photoluminescence (PL) measurements were used to characterize the InGaAs/GaAs pseudomorphic strained quantum well structures. Good InGaAs/GaAs interface and optical property were obtained by optimizing the growth condition. As determined by the x-ray simulation, laser irradiation during the InGaAs quantum well growth was found to enhance the InGaAs growth rate and reduce the indium composition in the substrate temperature range studied, 440–500°C, where good interfaces can be achieved. These changes, which are believed to be caused by laser-enhanced decomposition of TEGa and laser-enhanced desorption of TDMAAs, were found to depend on the laser power density as well. With laser irradiation, lateral variation of PL exciton peaks was observed, and the PL peaks became narrower.  相似文献   

5.
The compositional changes of InxGa1−xP graded buffer inserted between GaP substrate and subsequently grown In0.36Ga0.64P homojunction LED structure were investigated by Raman spectroscopy. The indium content of InxGa1−xP interlayers was increased in eight steps with thickness of 300 nm and constant compositional change ΔxIn between the steps. The properties of InxGa1−xP graded buffer along the structure cross-section have been studied by Raman back scattering method and the changes in GaP LO and TO phonons were investigated. Raman shift of 13 cm−1 in GaP-like LO1 phonon was measured on beveled [100]surface for compositional change of InxGa1−xP layer in the range of 0<xIn<0.32. The measurements on the cleaved edge of the sample in [011] direction revealed a strong TO phonon at 366 cm−1 and weak LO phonon peak at 405 cm−1 in GaP substrate. By reaching the graded InxGa1−xP region the intensity of TO phonon decreases and appearance of considerable TO1 phonon shift up to 350 cm−1 for In content xIn=0.16 was observed. For upper graded layers with xIn from 0.16 to 0.24 the position of GaP-like TO1 was constant and can be ascribed to relaxation of lattice mismatched thin InxGa1−xP graded upper layers in the structure.  相似文献   

6.
In this work, photomodulated transmittance (PT) has been applied to investigate the energy gap of GaBiAs layers grown on (0 0 1) and (3 1 1)B GaAs substrates. In PT spectra, a clear resonance has been observed below the GaAs edge. This resonance has been attributed to the energy gap-related absorption in GaBiAs. The energy and broadening of PT resonances have been determined using a standard approach in electromodulation spectroscopy. It has been found that the crystallographic orientation of GaAs substrate influences on the incorporation of Bi atoms into GaAs and quality of GaBiAs layers. The Bi-related energy gap reduction has been determined to be ∼90 meV per percent of Bi. In addition to PT spectra, common transmittance spectra have been measured and the energy gap of GaBiAs has been determined from the square of the absorption coefficient α2 around the band-gap edge. It has been found that the tail of density of states is significant for GaBiAs and influences the accuracy of energy gap determination from the α2 plot. In the case of PT spectra, the energy gap is determined unambiguously since this technique is directly sensitive to singularities in the density of states.  相似文献   

7.
Ultra-thin films of Dy are grown on Ge(0 0 1) substrates by molecular beam deposition near room temperature and immediately annealed for solid phase epitaxy at higher temperatures, leading to the formation of DyGex films. Thin films of Dy2O3 are grown on the DyGex film on Ge(0 0 1) substrates by molecular beam epitaxy. Streaky reflection high energy electron diffraction (RHEED) patterns reveal that epitaxial DyGex films grow on Ge(0 0 1) substrates with flat surfaces. X-ray diffraction (XRD) spectrum suggests the growth of an orthorhombic phase of DyGex films with (0 0 1) orientations. After the growth of Dy2O3 films, there is a change in RHEED patterns to spotty features, revealing the growth of 3D crystalline islands. XRD spectrum shows the presence of a cubic phase with (1 0 0) and (1 1 1) orientations. Atomic force microscopy image shows that the surface morphology of Dy2O3 films is smooth with a root mean square roughness of 10 Å.  相似文献   

8.
From electron internal photoemission and photoconductivity measurements at the (1 0 0)GaSb/Al2O3 interface, the top of the GaSb valence band is found to be 3.05 ± 0.10 eV below the bottom of the Al2O3 conduction band. This interface band alignment corresponds to conduction and valence band offsets of 2.3 ± 0.10 eV and 3.05 ± 0.15 eV, respectively, indicating that the valence band in GaSb lies energetically well above the valence band of InxGa1−xAs (0 ? x ? 0.53) or InP.  相似文献   

9.
Yttrium silicide formation and its contact properties on Si(1 0 0) have been studied in this paper. By evaporating a yttrium metal layer onto Si(1 0 0) wafer in conventional vacuum condition and rapid thermal annealing, we found that YSi2-x begins to form at 350 °C, and is stable to 950 °C. Atomic force microscopy characterization shows the pinholes formation in the formed YSi2-x film. By current-voltage measurement, the Schottky barrier height (SBH) of YSi2-x diode on p-type Si(1 0 0) was shown to be between 0.63 and 0.69 eV for annealing temperature from 500 to 900 °C. By low temperature current-voltage measurement, the SBH of YSi2-x diode on n-type Si(1 0 0) was directly measured and shown to be 0.46, 0.37, 0.32 eV for annealing temperature of 500, 600, and 900 °C, respectively, and possibly even lower for annealing at 700 or 800 °C.  相似文献   

10.
Based on spinel-type semiconducting electroceramics, negative temperature coefficient (NTC) thermistor materials, Ni0.9Co0.8Mn1.3−xFexO4 (0 ≤ x ≤ 0.7), with different compositions were synthesized by a co-precipitation method. The optimal pH value and the influence of Fe3+ doping during the synthesis processing were discussed. As-prepared Ni0.9Co0.8Mn1.3−xFexO4 materials were characterized by DT/TGA, XRD, FTIR, SEM, electrical measurement and impendance analysis. It was found that, as the Fe doping content in the Ni0.9Co0.8Mn1.3−xFexO4 samples increased, both the grain size and the density decreased. The as-sintered Ni0.9Co0.8Mn1.3−xFexO4 samples presented a single-phase cubic spinel structure. The impendance diagram indicated that the grain boundary resistance was dominant in the overall impendance of Ni0.9Co0.8Mn1.3−xFexO4 NTC ceramic materials. The value of ρ25, B25/50, slope and activation energy for the samples Ni0.9Co0.8Mn1.3−xFexO4 sintered at 1200 °C were in the range of 453.1-2411 Ω cm, 3103-3355 K, 3.27325-3.43149 and 0.28207-0.29325 eV, respectively. This suggests that the electrical properties can be adjusted to desired values by controlling the Fe3+ ion doping content.  相似文献   

11.
We present here the growth of GaAs, InAs and InGaAs nanowires by molecular beam epitaxy. The nanowires have been grown on different substrates [GaAs(0 0 1), GaAs(1 1 1), SiO2 and Si(1 1 1)] using gold as the growth catalyst. We show how the different substrates affect the results in terms of nanowire density and morphology. We also show that the growth temperature for the InGaAs nanowires has to be carefully chosen to obtain homogeneous alloys.  相似文献   

12.
We investigated the temperature dependence of the piezoelectric constant e14, i.e. the pyroelectric effect, of various strained InGaAs/GaAs single- and multi-quantum wells embedded in p-i-n structures grown on (111)B GaAs substrates and diodes made from these structures. Both photoreflectance spectroscopy and differential photocurrent spectroscopy were applied to obtain e14 over the temperature range 11-300 K. The values of e14 for InxGa1−xAs quantum well layers with x=0.12-0.21 were observed to increase with temperature, which is contrary to the expected dependence, and the strain-induced components of the pyroelectric coefficients were quantitatively determined. The dependence of the pyroelectric coefficient on In fraction is discussed.  相似文献   

13.
The deposition of In x Ga1–x As with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average In x Ga1–x As thicknesses and compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.  相似文献   

14.
A nondestructive method for measuring the thicknesses of epitaxial layers of Al x In1 ? x Sb alloys based on interference effects in reflectance spectra measured in a wide wavelength range (1–28 μm) is implemented. The studied 0.9–3.3 μm thick Al x In1 ? x Sb layers are grown on highly lattice-mismatched GaAs substrates by molecular beam epitaxy. The found thicknesses are in good agreement with the independent data of scanning electron microscopy. The spectral dependence of the refractive index n(E) of Al x In1 ? x Sb layers is measured both for the regions of transparency and fundamental absorption. The refractive index for the case of E < E 0 was calculated by a double-oscillator model using a refined experimental dependence of the band gap on the composition E 0(x). The experimental data on the n(E) of Al x In1 ? x Sb for energies E > E 0 are found based on the interference pattern.  相似文献   

15.
Dy thin films are grown on Ge(0 0 1) substrates by molecular beam deposition at room temperature. Subsequently, the Dy film is annealed at different temperatures for the growth of a Dy-germanide film. Structural, morphological and electrical properties of the Dy-germanide film are investigated by in situ reflection high-energy electron diffraction, and ex situ X-ray diffraction, atomic force microscopy and resistivity measurements. Reflection high-energy electron diffraction patterns and X-ray diffraction spectra show that the room temperature growth of the Dy film is disordered and there is a transition at a temperature of 300-330 °C from a disordered to an epitaxial growth of a Dy-germanide film by solid phase epitaxy. The high quality Dy3Ge5 film crystalline structure is formed and identified as an orthorhombic phase with smooth surface in the annealing temperature range of 330-550 °C. But at a temperature of 600 °C, the smooth surface of the Dy3Ge5 film changes to a rough surface with a lot of pits due to the reactions further.  相似文献   

16.
The epitaxial growth of Gd2O3 on GaAs (0 0 1) has given a low interfacial density of states, resulting in the demonstration of the first inversion-channel GaAs metal-oxide-semiconductor field-effect transistor. Motivated by the significance of this discovery, in this work, cross-sectional scanning tunneling microscopy is employed herein to obtain precise structural and electronic information on these epitaxial films and interfaces. At the interface, the interfacial stacking of Gd2O3 films is directly correlated with the stacking sequence of the substrate GaAs. Additionally, from the local electronic states across the gate oxides, the spatial extent of the GaAs wavefunctions into the oxide dielectric may suggest a minimum Gd2O3 thickness to be of bulk properties.  相似文献   

17.
This work presents the in situ reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM) and synchrotron-radiation photoemission studies for the morphological and interfacial chemical characterization of in situ atomic layer deposited (ALD) Al2O3 on pristine molecular beam epitaxy (MBE) grown Ga-rich n-GaAs (1 0 0)-4 × 6 surface. Both the RHEED pattern and STM image demonstrated that the first cycle of ALD-Al2O3 process reacted immediately with the GaAs surface. As revealed by in situ synchrotron-radiation photoemission studies, two types of surface As atoms that have excess in charge in the clean surface served as reaction sites with TMA. Two oxidized states were then induced in the As 3d core-level spectra with chemical shifts of +660 meV and +1.03 eV, respectively.  相似文献   

18.
In this paper, we present the growth and photoluminescence (PL) results of InAs quantum dots (QDs) on a p-type porous GaAs (001) substrate. It has been shown that critical layer thickness of InAs overgrowth on porous GaAs has been enhanced compared to that deposited on nominal GaAs. Using porous GaAs substrate, growth interruption and depositing 10 atomic monolayer (ML) In0.4Ga0.6As on InAs QDs, photoluminescence measured at 10 K exhibits an emission at 0.739 eV (∼1.67 μm) with an ultranarrow full width at half maximum (FWHM) of 16 meV. This emission represents the longer wavelength obtained up to date to our knowledge and has been attributed to the radiative transition in the InAs QDs.  相似文献   

19.
GaAsBi alloy was grown on (1 0 0) GaAs substrate by metalorganic vapour phase epitaxy. GaAsBi film was elaborated with V/III ratio of 9.5, trimethyl bismuth molar flow rate of about 3 μmol/min and a growth temperature of 420 °C. The surface morphology of GaAsBi alloy was investigated by means of scanning electron microscopy and atomic force microscopy. Results show surface Bi droplets formation. High-resolution X-ray diffraction (HRXRD) curves present more diffraction peaks other than that of GaAs substrate. Detailed HRXRD characterization shows that diffraction peaks splitting do not represent a crystallographic tilting with respect to GaAs substrate. Diffraction patterns also show a remarkable stability of the alloy against thermal annealing.  相似文献   

20.
The Pb(Zr0.20Ti0.80)O3/(Pb1−xLax)Ti1−x/4O3 (x = 0, 0.10, 0.15, 0.20) (PZT/PLTx) multilayered thin films were in situ deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering technique with a PbOx buffer layer. With this method, all PZT/PLTx multilayered thin films possess highly (1 0 0) orientation. The PbOx buffer layer leads to the (1 0 0) orientation of the multilayered thin films. The effect of the La content in PLTx layers on the dielectric and ferroelectric properties of the PZT multilayered thin films was systematically investigated. The enhanced dielectric and ferroelectric properties are observed in the PZT/PLTx (x = 0.15) multilayered thin films. The dielectric constant reaches maximum value of 365 at 1 KHz for x = 0.15 with a low loss tangent of 0.0301. Along with enhanced dielectric properties, the multilayered thin films also exhibit large remnant polarization value of 2Pr = 76.5 μC/cm2, and low coercive field of 2Ec = 238 KV/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号