首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor I (IGF-I)/insulin induced cytosolic p42/p44 mitogen-activated protein kinase (MAPK) activation in a time-dependent manner in fetal brown adipocytes, reaching a maximum at 5 min. Concurrently, nuclear p42/p44 MAPKs were also activated by IGF-I and insulin. This cytosolic and nuclear MAPK activation was totally prevented by pretreatment with the MAPK kinase (MEK1) inhibitor, PD98059. These results indicate that MEK mediates the IGF-I/insulin-induced p42/ p44 MAPK activation. IGF-I and insulin also increased the number of cells in the S + G2/M phases of the cell cycle, PCNA levels, and DNA synthesis at 24 h. This IGF-I/insulin-induced proliferation was completely blunted by the presence of MEK1 inhibitor. In contrast, inhibition of MEK1 potentiated the IGF-I-induced uncoupling protein (UCP-1) and the insulin-induced fatty acid synthase mRNAs expression after short and long-term treatments. Moreover, transient expression of a transfected active MEK construct (R4F) decreased IGF-I-induced UCP-1 and insulin-induced fatty acid synthase mRNA expression. These results demonstrate that p42/p44 MAPKs are essential intermediates for the IGF-I/insulin-induced mitogenesis, but may have a negative role in the regulation of adipocytic and thermogenic differentiation in brown adipocytes.  相似文献   

2.
An antibody that specifically recognized phosphothreonine 72 in ets-2 was used to determine the phosphorylation status of endogenous ets-2 in response to colony-stimulating factor 1 (CSF-1)/c-fms signaling. Phosphorylation of ets-2 was detected in primary macrophages, cells that normally express c-fms, and in fibroblasts engineered to express human c-fms. In the former cells, ets-2 was a CSF-1 immediate-early response gene, and phosphorylated ets-2 was detected after 2 to 4 h, coincident with expression of ets-2 protein. In fibroblasts, ets-2 was constitutively expressed and rapidly became phosphorylated in response to CSF-1. In both cell systems, ets-2 phosphorylation was persistent, with maximal phosphorylation detected 8 to 24 h after CSF-1 stimulation, and was correlated with activation of the CSF-1 target urokinase plasminogen activator (uPA) gene. Kinase assays that used recombinant ets-2 protein as a substrate demonstrated that mitogen-activated protein (MAP) kinases p42 and p44 were constitutively activated in both cell types in response to CSF-1. Immune depletion experiments and the use of the MAP kinase kinase inhibitor PD98059 indicate that these two MAP kinases are the major ets-2 kinases activated in response to CSF-1/c-fms signaling. In the macrophage cell line RAW264, conditional expression of raf kinase induced ets-2 expression and phosphorylation, as well as uPA mRNA expression. Transient assays mapped ets/AP-1 response elements as critical for basal and CSF-1-stimulated uPA reporter gene activity. These results indicate that persistent activation of the raf/MAP kinase pathway by CSF-1 is necessary for both ets-2 expression and posttranslational activation in macrophages.  相似文献   

3.
IL-10 is an anti-inflammatory cytokine with potent immunomodulatory effects, including inhibition of cytokine production. However, regulation of monocyte IL-10 production is poorly understood. In this report we have investigated the mechanisms of LPS-induced IL-10 production by human peripheral blood monocytes and demonstrate that IL-10 synthesis is uniquely dependent on the endogenous proinflammatory cytokines IL-1 and/or TNF-alpha. LPS signal transduction in monocytes has been shown to involve activation of the p38 and p42 mitogen-activated protein kinase (MAPK) cascades. The results in this paper indicate that inhibition of p38 MAPK potently inhibited the production of IL-10, IL-1beta, and TNF-alpha, whereas blockade of the p42/44 MAPK pathway, while partially inhibiting TNF-alpha and IL-1beta production, had no effect on monocyte secretion of IL-10. Furthermore, neither the inhibition of monocyte TNF-alpha induced by IL-10 nor the stimulation of soluble TNF receptor production was affected by inhibition of the p42/44 MAPK pathway, suggesting that this signaling event is not involved in either monocyte production of or anti-inflammatory responses to IL-10. These data raise the interesting possibility that proinflammatory TNF-alpha-mediated effects may be selectively blocked without modulating the induction or the response to IL-10, whereas the signaling events associated with the anti-inflammatory events induced by IL-10 remain to be elucidated.  相似文献   

4.
Astrocytes swell during neuronal activity as they accumulate K+ to buffer the increase in external K+ released from neurons. This swelling activates volume-sensitive Cl- channels, which are thought to be important in regulatory volume decrease and in the response of the CNS to trauma and excitotoxicity. Mitogen-activated protein (MAP) kinases also are activated by cell volume changes, but their roles in volume regulation are unknown. We have investigated the role of tyrosine and MAP kinases in the activation of volume-activated Cl- channels in cultured astrocytes, using whole-cell patch-clamp recording and Western immunoblots. As previously described, hypo-osmotic solution induced an outwardly rectifying Cl- current, which was blocked by NPPB and SITS. This Cl- current did not depend on [Ca2+ ]i because it was still observed when 20 mM BAPTA was included in the pipette, but it did exhibit rundown when ATP was omitted. Inhibition of tyrosine kinases with genistein or tyrphostin A23 (but not the inactive agents daidzein and tyrphostin A1) blocked the Cl- current. The MAP kinase kinase (MEK) inhibitor PD 98059 reversibly inhibited activation of the Cl- current by hypo-osmotic solution. Western immunoblots showed that genistein or PD 98059 blocked activation of Erk-1 and Erk-2 by hypo-osmotic solution in astrocytes. Therefore, activation of tyrosine and MAP kinases by swelling is a critical step in the opening of volume-sensitive Cl- channels.  相似文献   

5.
6.
Fc gamma R cross-linking on murine macrophages resulted in the activation of mitogen-activated protein kinase (MAPK) family members p42MAPK, p38, and c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase (SAPK). The temporal pattern of activation was distinct for each kinase. p42MAPK activation peaked at 5 min after receptor cross-linking, while peak p38 activity occurred 5 to 10 min later. Maximal JNK/SAPK activation occurred 20 min after Fc gamma R cross-linking. The selective MAPK/extracellular signal-regulated kinase-1 (MEK-1) inhibitor PD 098059 inhibited activation of p42MAPK induced by Fc gamma R cross-linking, but not p38 or JNK/SAPK activation. PD 098059 also inhibited the synthesis of TNF-alpha induced by Fc gamma R cross-linking (IC50 approximately 0.1 microM). Together, these results suggest that 1) the activation of MAPKs may play a role in Fc gammaR signal transduction, and 2) the activation of p42MAPK is necessary for Fc gamma R cross-linking-induced TNF-alpha synthesis.  相似文献   

7.
8.
9.
10.
PURPOSE: Purely subjective events, identified as "seizures" by patients but not accompanied by any clinical or EEG changes, commonly occur during evaluation of patients for intractable epilepsy. We wished to determine the significance of such events. METHODS: We analyzed the frequency of subjective episodes in 379 adults who underwent EEG video monitoring as part of their evaluation for intractable epilepsy and the relationship of these experiences to epileptic and psychogenic nonepileptic (NES) seizures. We examined the results of tests of mental ability and of emotional, psychosocial, and quality of life (QOL) adjustment to determine if individuals with subjective events alone could be distinguished from those with epileptic seizures only, NES only, or no events, by these measures. RESULTS: We noted subjective events in 39% (147 of 379) of the patients. Of patients with subjective episodes, 52% also had epileptic seizures, 7% had NES, 1% had both epileptic seizures and NES, and 40% had subjective events alone. As a group, patients with subjective events alone were slightly more intelligent and less impaired neuropsychologically than people in the other groups, but they performed more poorly on several important measures of adjustment. CONCLUSIONS: The identification of persons with purely subjective episodes apart from all other episodes is important both phenomenologically and from a practical viewpoint.  相似文献   

11.
Smooth muscle cell proliferation and migration is important in arteriosclerosis. In this process, cytokines and growth factors are upregulated and bind to their respective receptors, which in turn stimulate mitogen-activated protein (MAP) kinases. MAP kinases then relay signals to the nucleus that activate quiescent smooth muscle cells. Phosphatases downregulate MAP kinases. We investigated the role of a dual-specificity tyrosine phosphatase, MAP kinase phosphatase-1 (MKP-1), in smooth muscle cell proliferation. MKP-1 expression was high in arterial tissue by Northern analysis, and MKP-1 message was detected mainly in the arterial smooth muscle layer by in situ hybridization. After balloon injury of the rat carotid artery, expression of MKP-1 decreased greatly, whereas that of MAP kinases, especially p44 MAP kinase, increased. The time course of the reduction in MKP-1 message correlated with increased tyrosine phosphorylation and elevated p44 MAP kinase enzymatic activity. In rat arterial smooth muscle cells overexpressing MKP-1, growth was arrested in the G1 phase and entry into the S phase was blocked. A reduction in MKP-1 expression may contribute in part to proliferation of smooth muscle cells after vascular injury, possibly through a decrease in dephosphorylation of p44 MAP kinase.  相似文献   

12.
This meta-analysis quantitatively summarized the developmental influence and the effects of locomotor experience as well as the benefits of locomotor practice, locomotor assistance, and active searching patterns on children's search performance. Based on specific criteria, a search of a database and reference lists identified 19 studies, including 1,029 children (510 boys and 519 girls) from 4 to 144 months of age. Outcome measures of spatial performance were converted to 83 effect sizes that reflected the effects of specific experimental characteristics. Analyses of variance indicated that with older children, locomotor activities are more important to their spatial searching. Locomotor status, searching patterns, locomotor assistance, test conditions, and test reliability were identified as moderator variables. In addition, locomotor training significantly improved children's spatial search. The results supported the hypothesis that children's development of spatial search skills is influenced by locomotor experience.  相似文献   

13.
The differentiation of C2C12 myoblasts to myotubes was found to be accompanied by a strong activation of p70 S6 kinase and the mitogen-activated protein kinase (MAPK) family member SAPK2/p38, without significant activation of p42 MAPK and only slight activation of SAPK1/JNK and protein kinase Balpha. Consistent with these findings, SB 203580 (a specific inhibitor of SAPK2/p38) or rapamycin (which blocks the activation of p70 S6 kinase) prevented the formation of multinucleated myotubes, as well as the expression of muscle-specific proteins that included SAPK3 (another MAPK family member). PD 098059 (which prevents the activation of p42 MAPK) had no effect on myotube formation. Surprisingly, the slow activation of p70 S6 kinase during differentiation was not only prevented by rapamycin but also by SB 203580, and the activation of MAPKAP kinase-2 (an in vivo substrate of SAPK2/p38) was not only prevented by SB 203580 but also by rapamycin. In contrast, the acute activation of p70 S6 kinase in C2C12 myoblasts induced by phorbol esters was unaffected by SB 203580 and the acute activation of MAPKAP kinase-2 induced by anisomycin was unaffected by rapamycin. These results show for the first time that SAPK2/p38 plays an essential role in C2C12 cell differentiation.  相似文献   

14.
"Stress-regulated" mitogen-activated protein kinases (SR-MAPKs) comprise the stress-activated protein kinases (SAPKs)/c-Jun N-terminal kinases (JNKs) and the p38-MAPKs. In the perfused heart, ischemia/reperfusion activates SR-MAPKs. Although the agent(s) directly responsible is unclear, reactive oxygen species are generated during ischemia/reperfusion. We have assessed the ability of oxidative stress (as exemplified by H2O2) to activate SR-MAPKs in the perfused heart and compared it with the effect of ischemia/reperfusion. H2O2 activated both SAPKs/JNKs and p38-MAPK. Maximal activation by H2O2 in both cases was observed at 0.5 mM. Whereas activation of p38-MAPK by H2O2 was comparable to that of ischemia and ischemia/reperfusion, activation of the SAPKs/JNKs was less than that of ischemia/reperfusion. As with ischemia/reperfusion, there was minimal activation of the ERK MAPK subfamily by H2O2. MAPK-activated protein kinase 2 (MAPKAPK2), a downstream substrate of p38-MAPKs, was activated by H2O2 to a similar extent as with ischemia or ischemia/reperfusion. In all instances, activation of MAPKAPK2 in perfused hearts was inhibited by SB203580, an inhibitor of p38-MAPKs. Perfusion of hearts at high aortic pressure (20 kilopascals) also activated the SR-MAPKs and MAPKAPK2. Free radical trapping agents (dimethyl sulfoxide and N-t-butyl-alpha-phenyl nitrone) inhibited the activation of SR-MAPKs and MAPKAPK2 by ischemia/reperfusion. These data are consistent with a role for reactive oxygen species in the activation of SR-MAPKs during ischemia/reperfusion.  相似文献   

15.
Stimulation by UV irradiation, TNFalpha, as well as PDGF or EGF activates the JNK/SAPK signalling pathway in mouse fibroblasts. This results in the phosphorylation of the N-terminal domain of c-Jun, increasing its transactivation potency. Using an antibody that specifically recognizes c-Jun phosphorylated at Ser63, we show that culture confluency drastically inhibited c-Jun N-terminal phosphorylation due to the inhibition of the JNK/SAPK pathway. Transfection experiments demonstrate that the inhibition occurs at the same level as, or upstream of, the small G-proteins cdc42 and Rac1. In contrast, the classical MAPK pathway was insensitive to confluency. The inhibition of JNK/SAPK activation depended on the integrity of the actin microfilament network. These results were confirmed and extended in monolayer wounding experiments. After PDGF, EGF or UV stimulation, c-Jun was predominantly phosphorylated in cells bordering the wound, which are the cells that move to occupy the wounded area. Thus, modulation of the stress-dependent signal cascade by confluency will restrict c-Jun N-terminal phosphorylation in response to mitogenic or chemotactic agents to cells that border a wounded area.  相似文献   

16.
We have isolated two cDNA clones (cdc2-S5 and cdc2-S6) encoding p34cdc2 protein kinases, homologs of yeast cdc2/CDC28 genes, from a soybean nodule cDNA library. The two sequences share 90% sequence homology in the coding regions. The 5' and 3' noncoding regions are distinct from each other, however, indicating that at least two genes encode p34cdc2 protein kinases in soybean. Both sequences can rescue the cdc28 mutation in Saccharomyces cerevisiae but rescue it with different efficiency. Genomic Southern analysis showed the existence of two copies for each of these genes, which are not closely linked and are nonallelic. The relative expression level of the two soybean p34cdc2 genes varies in different tissues. Expression of cdc2-S5 is higher in roots and root nodules, whereas cdc2-S6 is more actively expressed in aerial tissues, indicating that regulation of these two p34cdc2 genes is coupled with plant developmental pathways. Expression of cdc2-S5 is, furthermore, enhanced after Rhizobium infection, whereas cdc2-S6 fails to respond, suggesting that cdc2-S5 plays a role in nodule initiation and organogenesis. This latter gene preferentially responds to auxin (alpha-naphthaleneacetic acid) treatment, indicating that phytohormones may be involved in the control of cell division mediated by Rhizobium infection. Thus, different p34cdc2 protein kinases may control cell division in different tissues in a multicellular organism and respond to different signals--e.g., phytohormones.  相似文献   

17.
We have investigated the regulation and localization of mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase (MAPKK) in both cytosolic and nuclear fractions of glomerular mesangial cells. p42 MAPK was localized by both immunoblot and kinase activity in both cytosol and nucleus and was rapidly activated, in both fractions, by fetal bovine serum and TPA. Downregulation of protein kinase C (PKC) by TPA inhibited stimulation of cytosolic p42 MAPK, but unexpectedly had no effect on stimulated p42 MAPK in the nucleus. Next we studied the upstream kinase p45 MAPKK by indirect immunofluorescence microscopy, Western blot analysis, and kinase specific activity. Unlike MAPK, p45 MAPKK is almost exclusively cytosolic in resting cells and kinase activity stimulated by TPA is restricted to the cytosol. Interestingly, PKC downregulation for 24 h with TPA dramatically enhanced nuclear MAPKK as assessed by all three techniques. Cytosolic stimulated MAPKK was attenuated in PKC downregulation. Collectively these results show that in mesangial cells: (i) p42 MAPK and p45 MAPKK localize in both the cytosol and the nucleus, and (ii) PKC exerts a negative effect on nuclear MAPKK activity as documented by PKC downregulation, which augments p45 MAPPK nuclear mass and activity. These results indicate that the dual regulation of these two kinases is under differential control in the cytosol and the nucleus.  相似文献   

18.
19.
Mammalian neurofilament proteins, particularly midsized (NF-M) and heavy (NF-H) molecular weight neurofilament proteins, are highly phosphorylated in axons. Neurofilament function depends on the state of phosphorylation of the numerous serine/threonine residues in these proteins. Most phosphorylation occurs in the lys-ser-pro (KSP) repeats in the C-terminal tail domains of NF-H and NF-M. In our previous study, cyclin-dependent kinase 5 (cdk5) was shown to phosphorylate specifically the KSPXK repeats in rat NF-H. Because 80% of the repeats are of the KSPXXXK type, it was of interest to determine which kinase phosphorylates these motifs. Using a synthetic KSPXXXK peptide to screen for a specific kinase, we fractionated rat brain extracts by column chromatography and identified extracellular signal-regulated kinase (Erk2) activated by an upstream activator, the mitogen-activated protein kinase kinase MAPKK (MEK), by Western blot analysis, sequence identification, and inhibition by a specific MEK inhibitor (PD 98059). The fraction containing Erk2, as well as bacterially expressed Erk1 and Erk2, phosphorylated all types of KSP motifs in peptides (KSPXK, KSPXXK, KSPXXXK, and KSPXXXXK) derived from NF-M and NF-H. They also phosphorylated an expressed 24 KSPXXXK repeat NF-H polypeptide, an expressed NF-H as well as dephosphorylated native rat NF-H, and NF-M proteins with accompanying decreases in their respective electrophoretic mobilities. A comparative kinetic study of Erk2 and cdk5 phosphorylation of KSPXK and KSPXXXK peptides revealed that, in contrast to cdk5, which phosphorylated only the KSPXK peptide, Erk2 could phosphorylate both. The preferred substrate for Erk2 was KSPXXXK peptide. The MEK inhibitor PD 98059 also inhibited phosphorylation of NF-H, NF-M, and microtubule-associated protein (MAP) in primary rat hippocampal cells and caused a decrease in neurite outgrowth, suggesting that Erk1,2 may play an important role in neurite growth and branching. These data suggest that neuronal Erk1 and Erk2 are capable of phosphorylating serine residues in diverse KSP repeat motifs in NF-M and NF-H.  相似文献   

20.
We have investigated the activation of the p38 MAPK pathway in response to CD40 engagement in multiple B cell lines and in human tonsillar B cells to define the role of p38 MAPK in proliferation, NF-kappaB activation and gene expression. Cross-linking CD40 rapidly stimulates both p38 MAPK and its downstream effector, MAPKAPK-2. Inhibition of p38 MAPK activity in vivo with the specific cell-permeable inhibitor, SB203580, under conditions that completely prevented MAPKAPK-2 activation, strongly perturbed CD40-induced tonsillar B cell proliferation while potentiating the B cell receptor (BCR)-driven proliferative response. SB203580 also significantly reduced expression of a reporter gene driven by a minimal promoter containing four NF-kappaB elements, indicating a requirement for the p38 MAPK pathway in CD40-induced NF-kappaB activation. However, CD40-mediated NF-kappaB binding was not affected by SB203580, suggesting that NF-kappaB may not be a direct target for the CD40-induced p38 MAPK pathway. In addition, SB203580 selectively reduced CD40-induced CD54/ICAM-1 expression, whereas CD40-dependent expression of CD40 and CD95/Fas and four newly defined CD40-responsive genes cIAP2, TRAF1, TRAF4/CART and DR3 were unaffected. Our observations show that the p38 MAPK pathway is required for CD40-induced proliferation and that CD40 induces gene expression via both p38 MAPK-dependent and -independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号