首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Several studies have been recently focused on friction stir welding of aluminium alloys and some data are also reported on FSW of aluminium-based composites. The application of this solid state welding technique to particles reinforced composites seems very attractive, since it should eliminate some typical defects induced by the traditional fusion welding techniques, such as: gas occlusion, undesidered interfacial chemical reactions between the reinforcement and the molten matrix alloy, inhomogeneous reinforcement distribution after welding. The present work describes the effect of the FSW process on the microstructure and, consequently, on the tensile and low-cycle fatigue behaviour, of an aluminium matrix (AA7005) composite reinforced with 10 vol.% of Al2O3 particles (W7A10A). The microstructural characterization evidenced, in the FSW zone, a substantial grain refinement of the aluminium alloy matrix (due to dynamic recrystallization induced by the plastic deformation and frictional heating during welding) and a significant reduction of the particles size (due to the abrasive action of the tool). Tensile tests showed a high efficiency of the FSW joints (about 80% of the ultimate tensile strength). The low-cycle fatigue tests evidenced a fatigue life reduction for the FSW material respect to the base composite, particularly for high values of total strain range. The fracture mechanisms for the FSW specimens were those typical of metal matrix composites: interfacial decohesion, void nucleation and growth, as well as fracture of reinforcing particles, as shown by SEM analyses of the fracture surfaces.  相似文献   

2.
《Composites Part A》2007,38(4):1200-1210
Metal matrix composites reinforced with Al2O3 particles combine the matrix properties with those of the ceramic reinforcement, leading to higher stiffness and superior thermal stability with respect to the corresponding unreinforced alloys. However, their wide application as structural materials needs proper development of a suitable joining processes. The present work describes the results obtained from microstructural (optical and scanning electron microscopy) and mechanical evaluation (hardness, tensile and low-cycle fatigue tests) of an aluminium alloy (AA6061) matrix composite reinforced with 20 vol.% fraction of Al2O3 particles (W6A20A), welded using the friction stir welding process. The mechanical response of the FSW composite was compared with that of the base material and the results were discussed in the light of microstructural modifications induced by the FSW process on the aluminium alloy matrix and on the ceramic reinforcement. The FSW reduced the size of both particles reinforcement and aluminium grains and also led to overaging of the matrix alloys due to the frictional heating during welding. The FSW specimens, tested without any post-weld heat treatment or surface modification showed lower tensile strength and higher elongation to failure respect to the base material. The low-cycle fatigue life of the FSW composite was always lower than that of the base material, mainly at the lower strain-amplitude value. The cyclic stress response curves of the FSW composite showed evidence of progressive hardening to failure, at all cyclic strain-amplitudes, while the base material showed a progressive softening.  相似文献   

3.
Aluminium Matrix Composites (AMCs) reinforced with particulate form of reinforcement has replaced monolithic alloys in many engineering industries due to its superior mechanical properties and tailorable thermal and electrical properties. As aluminium nitride (AlN) has high specific strength, high thermal conductivity, high electrical resistivity, low dielectric constant, low coefficient of thermal expansion and good compatibility with aluminium alloy, Al/AlN composite is extensively used in electronic packaging industries. Joining of AMCs is unavoidable in many engineering applications. Friction Stir Welding (FSW) is one of the most suitable welding process to weld the AMCs reinforced with particulate form of ceramics without deteriorating its superior mechanical properties. An attempt has been made to develop regression models to predict the Ultimate Tensile Strength (UTS) and Percent Elongation (PE) of the friction stir welded AA6061 matrix composite reinforced with aluminium nitride particles (AlNp) by correlating the significant parameters such as tool rotational speed, welding speed, axial force and percentage of AlNp reinforcement in the AA6061 matrix. Statistical software SYSTAT 12 and statistical tools such as analysis of variance (ANOVA) and student’s t test, have been used to validate the developed models. It was observed from the investigation that these factors independently influenced the UTS and PE of the friction stir welded composite joints. The developed regression models were optimized to maximize UTS of friction stir welded AA6061/AlNp composite joints.  相似文献   

4.
As a solid state joining process, friction stir welding (FSW) has proven to be a promising approach for joining aluminium matrix composites (AMCs). However, challenges still remain in using FSW to join AMCs even with considerable progress having been made in recent years. This review paper provides an overview of the state-of-the-art of FSW of AMC materials. Specific attention and critical assessment have been given to: (a) the macrostructure and microstructure of AMC joints, (b) the evaluation of mechanical properties of joints, and (c) the wear of FSW tools due to the presence of reinforcement materials in aluminium matrices. This review concludes with recommendations for future research directions.  相似文献   

5.
The usage of particulate reinforced metal matrix composite (MMC) is steadily increasing due to its properties such as high specific strength, high specific modulus and good wear resistance. Aluminium matrix composite (AMC) plays an important role to meet the above requirements. Effective utilization of AMC is based on not only its production but also on fabrication methods. Among AMCs, those based on particulate reinforcements are particularly attractive, due to their lower production costs. Aluminium matrix titanium carbide reinforced composite (Al–TiCp) was produced in an inert atmosphere by indigenously developed Modified Stir Casting Process with bottom pouring arrangement (3–7% TiC by weight). Friction stir welding process (FSW) is employed to make weld joints. The welding parameters such as axial force, welding speed, tool rotational speed, percentage TiC addition etc., and profile of the tool were considered for analysis. In this study, an attempt is made to predict ultimate tensile strength (UTS) of the welded joints using a mathematical model. The FSW specimens without any post-weld heat treatment belonging to a different set of parameters tested, exhibited a high joint efficiency (most of them ranging from 90% to 98%) with respect to the ultimate tensile strength of the base material AA6061. It was found from the analysis of the model that the tool pin profile and the welding speed have more significant effect on tensile strength.  相似文献   

6.
Fatigue properties of friction stir welding (FSW) butt joints for Al–Cu alloy 2219‐T6 were investigated by experimental analysis and numerical simulation. Microstructure characteristics of FSW butt joints for 2219 aluminium alloy were studied during different fatigue stages. Micro hardness values and grain sizes across the FSW joint at different cycles were measured to study the fatigue properties of the joint. Local mechanical performances of the FSW butt joints were investigated based on the micro tensile tests. Fatigue parameters of different regions in the FSW joints were obtained from the four‐point‐correlation method. The local stress and strain response of the FSW joints were obtained based on mechanical performances of the micro tension specimens. The comparison results between simulation and tests analysis show that the built finite element model is effective for estimating the weak areas for FSW joints.  相似文献   

7.
The microstructure and mechanical properties of joints conducted by friction stir welding, FSW, at different rotational speeds in thick plates of a composite material with a high volume fraction of reinforcement, namely 2124Al/25vol%SiCp, are studied. Original particle-free regions vanish during the stirring process, leading to a homogeneous particle distribution. Occasional breakage of some large particles occurs. Tunnel defects appear at low rpm, and disappear at high rotational speeds. The size of the thermo mechanically affected zone, TMAZ, increases with increasing rpm. Ductility of the welds in the range of 10–15% is achieved in compression tests whereas a rather brittle behavior is obtained in tension. A strength difference, SD, effect between compression and tensile test is obtained. This accounts for the little detrimental effect of the FSW process on the matrix–reinforcement interface. The SD effect is attributed to the presence of a microscopic residual stress.  相似文献   

8.
Friction stir welding (FSW) is a solid state welding process for joining aluminum alloys and has been employed in aerospace, rail, automotive and marine industries for joining aluminium, magnesium, zinc and copper alloys. In FSW, the base metal properties such as yield strength, ductility and hardness control the plastic flow of the material under the action of rotating non-consumable tool. The FSW process parameters such as tool rotational speed, welding speed, axial force, etc. play a major role in deciding the weld quality. In this investigation, an attempt has been made to establish relationship between the base material properties and FSW process parameters. FSW joints have been made using five different grades of aluminium alloys (AA1050, AA6061, AA2024, AA7039 and AA7075) using different combinations of process parameters. Macrostructural analysis has been done to check the weld quality (defective or defect free). Empirical relationships have been established between base metal properties and tool rotational speed and welding speed, respectively. The developed empirical relationships can be effectively used to predict the FSW process parameters to fabricate defect free welds.  相似文献   

9.
In friction stir welding (FSW), the material under the rotating action of non-consumable tool has to be stirred properly to get defect free welds in turn it will improve the strength of the welded joints. The welding conditions and parameters are differing based on the mechanical properties of base materials such as tensile strength, ductility and hardness which control the plastic deformation during friction stir welding. The FSW process parameters such as tool rotation speed, welding speed and axial force, etc. play a major role in deciding the weld quality. FSW Joints of cast aluminium alloys A319, A356, and A413 were made by varying the FSW process parameters and the optimum values were obtained. In this investigation, empirical relationships are established and they can be effectively used to predict the optimum FSW process parameters to fabricate defect free joints with high tensile strength from the known base metal properties of cast aluminium alloys.  相似文献   

10.
对8 mm厚5083-H321铝合金板进行了搅拌摩擦焊接试验,研究了焊接工艺参数对搅拌摩擦焊接头显微组织和力学性能的影响。结果表明:该搅拌摩擦焊接头焊核区显微组织为细小的等轴晶组织,热机影响区为拉伸弯曲变形组织,热影响区非常窄,其晶粒尺寸与母材相当;综合接头表面形貌和拉伸性能得到较佳的搅拌摩擦焊接工艺参数为使用搅拌针为三棱形带螺纹、轴肩为内扣型的搅拌头,主轴转速为300 r·min-1,焊接速率为120 mm·min-1;在该工艺条件下接头表面成形良好,抗拉强度可达到母材的94.5%。  相似文献   

11.
A356Al/TiB2颗粒增强铝基复合材料的搅拌摩擦焊   总被引:1,自引:0,他引:1  
李敬勇  赵勇  陈华斌 《材料工程》2005,(1):29-32,36
采用纯机械化的固相连接技术--搅拌摩擦焊成功地焊接了应用原位反应合成法制造的铸态A356Al/6.5%TiB2(体积分数)颗粒增强铝基复合材料,与铝合金相比,铝基复合材料搅拌摩擦焊的焊缝质量对焊接参数更为敏感.该连接方法在较低温度下实现铝基复合材料的焊接,避免了基体铝合金与增强相之间的化学反应,同时在搅拌头机械搅拌、挤压和摩擦热的共同作用下,焊缝区基体材料的晶粒和增强相被破碎并形成再结晶晶核,细化了组织结构,增强相分布也更加弥散.焊缝区的硬度值波动范围很小,抗拉强度比母材增加约20%.研究表明,搅拌摩擦焊用于连接颗粒增强铝基复合材料具有明显的优势.  相似文献   

12.
The tensile deformation and fracture behaviour of aluminium alloy 2014 discontinuously-reinforced with particulates of Al2O3 was studied with the primary objective of understanding the influence of reinforcement content on composite microstructure, tensile properties and quasi-static fracture behaviour. Results reveal that elastic modulus and strength of the metal-matrix composite increased with reinforcement content in the metal matrix. With increase in test temperature the elastic modulus showed a marginal decrease while the ductility exhibited significant improvement. The improved strength of the Al-Al2O3 composite is ascribed to the concurrent and mutually interactive influences of residual stresses generated due to intrinsic differences in thermal expansion coefficients between constituents of the composite, constrained plastic flow and triaxiality in the soft and ductile aluminium alloy matrix due to the presence of hard and brittle particulate reinforcements. Fracture on a microscopic scale initiated by cracking of the individual or agglomerates of Al2O3 particulates in the metal matrix and decohesion at the matrix-particle interfaces. Failure through cracking and decohesion at the interfaces increased with reinforcement content in the matrix. The kinetics of the fracture process is discussed in terms of applied far-field stress and intrinsic composite microstructural effects.  相似文献   

13.
The influence of the plastic behaviour of two aluminium alloys, very popular in welding construction, on friction stir weldability, is analysed in this work. The two base materials, a non-heat-treatable (AA5083-H111) and a heat-treatable aluminium (AA6082-T6) alloy, are characterised by markedly different strengthening mechanisms and microstructural evolution at increasing temperatures. Their plastic behaviour, under different testing conditions, was analysed and compared. The two base materials were also welded under varied friction stir welding (FSW) conditions in order to characterise their weldability. The relation between weldability, material flow during FSW and the plastic behaviour of the base materials, at different temperatures, was analysed. It was found that the AA6082 alloy, which displays intense flow softening during tensile loading at high temperatures, and is sensitive to dynamic precipitation and overageing under intense non-uniform deformation, displays good weldability in FSW. Under the same welding conditions, the AA5083 alloy, which in quasi-static conditions displays steady flow behaviour at increasing temperatures, and is sensitive to moderate hardening at high strain rates, displays poor weldability.  相似文献   

14.
Friction stir welding (FSW) since its invention has been attracting relevant interest for joining aluminium alloys. Due to the nature of this process, the materials can be joint without melting. Thanks to this peculiar characteristic, the issues associated with the cooling from liquid phase are avoided or considerably reduced, such as cracking, porosity, and defects. However, as well as other well‐established welding techniques, the FSW process gives rise to formation of residual stress in the welding region and surrounding volume: heat and thermo‐mechanical affected zones. Presence of residual stress in a mechanical component is well‐known to affect its performance, particularly regarding fatigue at high number of cycles. Another aspect that influences the fatigue life is the underlying microstructure. In this work, we firstly study the residual stress field and the underlying microstructural features arising in FSW butt joints and their effect on the fatigue performance of this type of weldments. The evaluation of residual stress field is carried out by means of modern experimental techniques. In the first instance, synchrotron X‐ray powder diffraction was employed for two‐dimensional full field maps of residual stress. Corroboration of these measurements was done by exploiting the capability of focused ion beam and digital image correlation (FIB‐DIC), which is able to deliver pointwise absolute measurement of residual stress. A set of FSW samples were then tested under uniaxial fatigue loading at several loading ranges, in the high cycle fatigue regime, in order to understand whether the severity of loads affects the crack path and life endurance. Fractographic and electron backscattered diffraction (EBSD) analysis then revealed crack nucleation site and propagation mechanisms with the respect of the underlying microstructure. Outcome of these experimental studies is then thoroughly discussed.  相似文献   

15.
Microstructural, mechanical and corrosive properties of friction stir welded aluminium joints Friction stir welding (FSW) is a novel solid state welding process. It allows joining of high strength aluminum alloys, generally considered as difficult-to-weld with conventional technologies, without loss in joint strength. Results of investigations on selfmade FSW butt joints of the aluminum alloys 2024-T3 and 6013-T4 are presented. First, the microstructure of the weld seam and heat affected zone is characterised metallographically and by hardness measurements. By tensile, fatigue endurance (SN) and fatigue crack propagation tests it is demonstrated, that especially the FSW-joints of 2024–T3 sustain high mechanical loadings. Investigations on the corrosion properties reveal a certain sensitivity of the 2024-T3 joints to intergranular and exfoliation corrosion.  相似文献   

16.
Friction stir welding (FSW) is a solid state welding process for joining aluminium alloys and is employed in aerospace, rail, automotive and marine industries. In FSW, the base metal properties such as yield strength, hardness and ductility control the plastic flow of the material under the action of a rotating non-consumable tool. The FSW process parameters such as, the tool rotational speed, the welding speed and the axial force play a major role in deciding the weld quality. In this investigation, FSW joints were made using six different grades of aluminium alloys (AA1100, AA2219, AA2024, AA6061, AA7039, and AA7075) using different levels of process parameters. Macrostructural analysis was carried out to identify the feasible working range of process parameters. The optimal welding conditions to attain maximum strength for each alloy were identified using Response Surface Methodology (RSM). Empirical relationships were established between the base metal mechanical properties of aluminium alloys and optimised FSW process parameters. These relationships can be effectively used to predict the optimised FSW process parameters from the known base metal properties (yield strength, elongation and hardness).  相似文献   

17.
AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effect of three welding processes on fatigue crack growth behaviour is reported in this paper. Transverse tensile properties of the welded joints were evaluated. Microstructure analysis was also carried out using optical and electron microscopes. It was found that the FSW joints are exhibiting superior fatigue crack growth resistance compared to EBW and GTAW joints. This was mainly due to the formation of very fine, dynamically recrystallised grains and uniform distribution of fine precipitates in the weld region.  相似文献   

18.
Abstract

This article describes a study of the application of a solid state diffusion welding technique to an aluminium alloy (6061) matrix composite reinforced with alumina particles in two different percentages (10 and 20 vol.-%) using an Al–Li alloy interlayer. The influence of bonding parameters on joint formation and the effect of the reinforcement in the bond line were determined by microstructural study of the joints. Shear tests using single overlap joints were used to evaluate the strength of these bonds.  相似文献   

19.
The advantages of friction stir welding (FSW) process compared to conventional fusion welding technologies have been clearly demonstrated in recent years. In the present study, AA6082 FSW joints were produced by employing different welding parameters. The principal aim of this work is to apply thermoelastic stress analysis (TSA) to study crack propagation characteristics of friction stir welded aluminum sheets, during cyclic fatigue tests. The crack propagation experiments were performed by employing single edge notched specimens; fatigue tests were performed under tension with load ratio R = 0.1. All the mechanical tests were conducted up to failure. The TSA measurement system allowed crack evolution to be observed in real-time during fatigue cycles and stress fields to be derived on the specimens from the measured temperature variation. The thermoelastic data were used to analyse principal stresses and principal strains on the specimens surface and the crack growth rate during tests. In addition, it was possible to evaluate all the joints defects effects, as a function of welding parameters, correlating effects on different crack growth rate and instabilities. The achieved results were compared with those obtained by classical CCD camera monitoring of crack front propagation during cyclic loading and all the results were validated by employing finite element analysis performed with ABAQUS software.  相似文献   

20.
The mechanical and microstructural properties of 2024 and 7075 aluminium alloys joined together by friction stir welding were analysed in the present study. The two materials were welded with perpendicular rolling direction and after were tested in tension at room temperature in order to analyse the mechanical response and to observe the differences with the parent materials, the tensile response of the material in longitudinal direction revealed an increase in strength respect to the transverse one. The cyclic fatigue tests were conducted in the axial direction with R = σminmax = 0.1). The microstructure resulting from the FSW process was studied by employing optical and scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号