首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strain-controlled low cycle fatigue tests have been conducted in air between 298–873 K to ascertain the influence of temperature on LCF behaviour of nitrogen-alloyed type 316L stainless steel. A strain amplitude of ± 0.60% and a symmetrical triangular waveform at a constant strain rate of 3 × 10−3 s−1 were employed for all tests. Crack initiation and propagation modes were evaluated, and the deformation and damage mechanisms which influence the cyclic stress response and fatigue life identified. The cyclic stress response at all temperatures was characterized by an initial hardening to the maximum stress, followed by gradual softening prior to attaining saturation. Temperature dependence of fatigue life showed a maximum in the intermediate temperature range. The drastic reduction in fatigue life at elevated temperatures has been ascribed primarily to the combined influence of dynamic strain ageing effects and oxidation-enhanced crack initiation, while the lower life at room temperature is attributed to detrimental effects associated with deformation-induced martensite.  相似文献   

2.
This paper discusses low‐cycle fatigue characteristics of 316L stainless steel under proportional and nonproportional loadings. Tension–torsion multiaxial low‐cycle fatigue tests were performed using five strain paths. Additional hardening was observed under nonproportional loadings and was more significant in tests with larger nonproportionality. Mises equivalent strain, Smith–Watson–Topper, Fatemi–Socie, Kandil–Brown–Miller and nonproportional strain parameters were applied to the experimental data to evaluate the multiaxial low‐cycle fatigue damage. The applicability of the damage laws to practical design was discussed.  相似文献   

3.
ABSTRACT

The influence of low-temperature gaseous carburisation on notch fatigue behaviour of 316L steel under cyclic axial loading was investigated. After carburisation, the carburised case was well distributed at the surface region and was not influenced by the notch geometry. Low-temperature carburisation considerably enhanced the notch fatigue performance, which led to 32% and 44% increase in the endurance limits for the specimens with stress concentration factors K t?=?1.91 and 3.91, respectively. The notch sensitivity of 316L steel reduced after carburisation. Irrespective of the applied stress amplitude, the fatigue crack nucleation sites were always at the notch root surface for the untreated specimens. For the carburised specimens, fatigue cracks nucleation changed from surface at high-level stress to subsurface at low-level stress.  相似文献   

4.
Observations of fatigue crack growth behaviour were made during rotating‐bend testing of hard‐shot peened Type 316L steel. From the results of these observations, the crack that developed in the axial direction was observed and the mechanism of the fatigue crack properties was clarified as follows: (1) Small circumferential surface fatigue cracks were detected at 60% of the fatigue lifetime. These cracks propagated very slowly in both the circumferential and radial directions. (2) When a radial crack reached a depth of between 150 and 350 μm, axial fatigue cracks were formed. (3) In the next stage, either the radial or the axial fatigue cracks continued propagating, or an inwards growing radial crack formed from the axial crack. (4) In the final stage, the circumferential surface crack began to grow rapidly and resulted in fracture. (5) The fracture type of hard‐shot peened Type 316L is a particular type of surface fracture.  相似文献   

5.
Abstract Extensive studies involving multilevel loading have been performed to study the interaction effects of High–Low and Low–High loading sequences on various metals. 1 - 10 High–Low sequences generally yield ‘damage’ sums less than unity while ‘damage’ sums for Low–High sequences are typically > 1. It can be appreciated that the mechanisms governing fatigue behaviour under elastically dominant conditions differ from those observed under predominantly plastic conditions. This paper presents results on the interaction between plastically dominant fatigue (PDF) and elastically dominant fatigue (EDF) in 316L stainless steel and 6061‐T6 aluminium alloy. In addition, overstraining effects coupled with PDF and EDF interaction in 316L stainless steel are also reported.  相似文献   

6.
本研究对316L奥氏体不锈钢母材和焊缝分别进行高温低周疲劳试验,对试样的微观结构和裂纹扩展形貌进行观察,分析母材和焊缝在高温低周疲劳循环应力响应下的位错结构和损伤机制。结果表明,316L奥氏体不锈钢母材在试验过程中由于位错增殖和位错湮灭导致发生循环硬化和循环稳定,在焊缝中由于位错湮灭导致发生循环软化。母材和焊缝在连续低周疲劳试验中裂纹主要以穿晶方式扩展,焊接接头处孔洞的连接是最终导致焊接接头疲劳断裂的主要机制。  相似文献   

7.
The present work has been undertaken to study creep damage in welded joints. The complex dual phase microstructure of 316L welds are simulated by manually filling a mould with longitudinally deposited weld beads. Most of the moulded specimens were then aged for 2000 hours at 600°C. High resolution scanning electron microscopy was extensively used to examine the microstructure of the welded material before and after ageing. Columnar grains of austenite constitute a matrix in which thin dendrites of δ-ferrite can be found. The ageing generates the precipitation of carbides, resulting in less transformation in the material. Smooth and notched creep specimens were cut from the mould and tested at 600°C under different stress levels. The creep life of the simulated welded material is shown to be lower than that of the base material. Microstructural observations reveal that creep cavities are preferentially located along the austenite grain boundaries. This analysis of intergranular damage on test specimens is conducted to obtain a predictive damage law which could be used to calculate the lifetime of welded joints.  相似文献   

8.
The effect of strain rate and nitrogen content on cyclic deformation and substructural changes in 316LN stainless steel is investigated at temperatures 773, 823 and 873 K. Dynamic strain aging (DSA) and/or thermal-recovery processes are observed to control cyclic deformation, and the regimes of their predominance are mapped. An increase in nitrogen content and DSA enhanced cyclic stress and are found to offset thermal-recovery induced cyclic strength reduction. In addition, strain localization in the form of slip-bands impinging on grain boundary is observed. The predominance of thermal-recovery over DSA manifested as dislocation-poor channels, dislocation cells within and in-between planar slip-bands.  相似文献   

9.
In the present study, a stochastic model is developed for the low-cycle fatigue life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. In the proposed model, fatigue phenomenon is considered as a Markov process, and damage vector and reliability are defined on every plane. Any low-cycle fatigue damage evaluating method can be included in the proposed model. The model enables calculation of statistical reliability and crack initiation direction under variable multiaxial loading, which are generally not available. In the present study, a critical plane method proposed by Kandil et al . ( Metals Soc., London 280, 203–210, 1982) maximum tensile strain range, and von Mises equivalent strain range are used to calculate fatigue damage. When the critical plane method is chosen, the effect of multiple critical planes is also included in the proposed model. Maximum tensile strain and von Mises strain methods are used for the demonstration of the generality of the proposed model. The material properties and the stochastic model parameters are obtained from uniaxial tests only. The stochastic model made of the parameters obtained from the uniaxial tests is applied to the life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. The predicted results show good aggreement with experimental results.  相似文献   

10.
The effects of wire brush hammering on low cycle fatigue behaviour of AISI 316 austenitic stainless steel has been investigated on turned samples through an experimental study combining strain controlled fatigue tests, scanning electron microscope examination and X‐ray diffraction analysis. An increase in fatigue life by 266% was reported at an imposed strain amplitude of Δεt/2 = 0.2%. This improvement is limited to Δεt/2 ≤ 0.5%. It is found that wire brush hammering produces a surface texture that favours, under cyclic loading, nucleation of randomly dispersed short cracks of the order of 50 µm in length stabilized by a compressive residual stress field. In contrast, turned surface showed much longer unstable cracks of the order of 200 µm in length nucleated in the machining groves and propagated under the effect of a tensile residual stress field. It has also been established that wire brush hammering can be used as intermittent treatment to improve the residual fatigue life of components subjected to cyclic loading. The treatment is very efficient if it is performed at a fraction of service lifetime ni/Nr lower than 0.5.  相似文献   

11.
Mechanism of dynamic strain aging (DSA) and its effect on the high-temperature low-cycle fatigue resistance in type 316L stainless steel were investigated by carrying out low-cycle fatigue tests in a wide temperature range from 20 to 650 °C with strain rates of 3.2×10−5–1×10−2/s. The regime of DSA was evaluated using the anomalous features of material behavior associated with DSA. The activation energies for each type of serration were about 0.57–0.74 times those for lattice diffusion indicating that a mechanism other than lattice diffusion is involved. It is reasonably concluded that the pipe diffusion of solute atoms along the dislocation core is responsible for DSA. Dynamic strain aging reduced the fatigue resistance by ways of multiple crack initiation, which comes from the DSA-induced inhomogeneity of deformation, and rapid crack propagation due to the DSA-induced hardening.  相似文献   

12.
Influence of Dynamic strain aging (DSA) under low cycle fatigue (LCF) and high cycle fatigue (HCF) loading was investigated by conducting LCF and HCF tests on specimens over a wide range of temperature from 573 to 973 K. DSA was found to be highly pronounced in the temperature range of 823–873 K. DSA was seen to have contrasting implications under LCF and HCF deformation. The cyclic hardening owing to DSA caused an increase in the cyclic stress response under LCF, leading to decrease in cyclic life. On the other hand, the DSA-induced strengthening suppressed the crack initiation phase under HCF where the applied stress remains fixed, leading to an increase in the cyclic life.  相似文献   

13.
The particular roles of grain morphology and defects, controlled using laser-scan strategies, on the mechanical properties and the fatigue behavior of 316L stainless steel are investigated. Microstructural characterization and X-ray tomography analysis was performed to understand the genesis of polycrystalline microstructure and defects. Tensile and fatigue tests were performed to analyze the effect of defect population and microstructural properties on plasticity and damage mechanisms during monotonic and cyclic loading. The effect of the grain-size and shape and type of defect was carefully investigated to evaluate the mechanisms driving the mechanical behavior under quasi-static and fatigue loading. It is shown that the laser-scan strategy determines the anisotropy in the plane perpendicular to the building direction. Moreover, contrary to the existing literature, for 316L obtained by AM, the grain size and shape does not affect the mechanical properties, and LoF defects drive the fatigue life, independent of the defect/grain size ratio.  相似文献   

14.
Low cycle fatigue (LCF) tests were performed for a type 316Ti stainless steel (SS) in high temperature water. Fatigue crack initiation behaviors in high temperature water were investigated. It was found that there existed several kinds of Ti-bearing precipitates, consisting of isolated TiN or duplex (Al, Mg)O/TiN, Mo-rich (Ti, Mo)C and Ti(N,C) in the steel. Fatigue cracks were mainly initiated at Ti-bearing precipitates, phase boundaries of austenite/α-ferrite phases and persistent slip bands (PSBs) in austenite. It is believed that synergism between the mechanical factors and electrochemical reactions played a key role in the process of fatigue crack initiation in high temperature water. Related fatigue crack initiation mechanisms for the 316Ti SS are discussed.  相似文献   

15.
316L不锈钢冠脉支架制造工艺的研究   总被引:3,自引:0,他引:3  
王佳玲  陈卓  李雨田  卜宪章 《材料导报》2008,22(2):113-114,118
研究了激光精细雕刻冠状动脉血管支架的制造工艺,对冠脉支架结构设计原则、激光精细雕刻加工参数、热处理工艺进行了探讨.并给出一种冠脉支架结构,进行切割实验,分析了影响切口质量因素及真空热处理工艺、电化学工艺对冠脉支架样品质量的影响.  相似文献   

16.
For complex loading history (creep and fatigue) applied to engineering components, assessment procedures generally estimate the crack initiation and growth by using the summation of continuous fatigue and pure creep crack growth rates. This text deals with the pure creep correlation established in laboratory tests and applied to components subjected to creep-fatigue loading. The trend of the creep opening displacement history superimposed onto the crack progress is sufficient to predict what kind of tail effect will occur when plotting ? vs. C*. The exponent of this correlation is demonstrated to be very close to unity, whatever creep stage is concerned. The contribution of either the material behaviour or the crack extension to the ? -C* correlation is discussed.  相似文献   

17.
To investigate the effect of bulk damage on fatigue crack initiation, crack initiations due to low‐cycle fatigue of Type 316 stainless steel were observed by electron backscatter diffraction (EBSD) and scanning electron microscopy. The EBSD observations showed that local misorientation developed inhomogeneously due to the cyclic strain, and many cracks were initiated from the slip steps and grain boundaries where the local misorientation was relatively large. The crack initiations could be categorized into two types: enhancement of the driving force by geometrical discontinuity (slip steps and notches), and reduction of material resistance against crack initiation caused by accumulated bulk damage at grain boundaries. In particular, more than half of the cracks were initiated from grain boundaries. However, in spite of the significant bulk damage, the fatigue life was extended by removing the surface cracks under strain of 1 and 2% amplitude. The stress state at the microstructural level was changed by the surface removal, and the damaged portion did not suffer further damage. It was concluded that although bulk damage surely exists, the fatigue life can be restored to that of the untested specimen by removing the surface cracks.  相似文献   

18.
The fatigue behaviour of additively manufactured (AM) 316L stainless steel is investigated with the main emphasis on internal porosity and surface roughness. A transition between two cases of failure are found: failure from defects in the surface region and failure from the internal defects. At low applied load level (and consequently a high number of cycles to failure), fatigue is initiating from defects in the surface region, while for high load levels, fatigue is initiating from internal defects. Porosities captured by X‐ray computed tomography (XCT) are compared with the defects initiating fatigue cracks, obtained from fractography. The fatigue data are synthesised using stress intensity factor (SIF) of the internal and surface defects on the fracture surface.  相似文献   

19.
对固溶处理后的316L不锈钢试样进行了拉伸实验,根据Ludwik真应力应变模型对拉伸实验曲线进行了非线性拟合,并用Crussard-Jaoul法计算和分析了Ludwik模型中的加工硬化指数(n),同时通过对拉伸试样的微观组织观察,分析了316L不锈钢的加工硬化机制.实验结果表明:316L不锈钢在拉伸变形过程中加工硬化非...  相似文献   

20.
The low‐cycle fatigue behaviour of a duplex stainless steel was comparatively studied in standard heat‐treated and isothermally aged (at 475 °C for 100 h) conditions by mechanical testing, scanning and transmission electron microscopy. It was established that fatigue life is longer in the aged condition as compared to the annealed condition at lower values of total strain amplitude Δ?/2 (Δ?/2 = 4.0 × 10?3 and 6.0 × 10?3) and becomes similar in annealed and aged conditions at Δ?/2 = 8.0 × 10?3. Fatigue resistance of the material converges with increase in Δ?/2 values as a result of rapid cyclic softening of the ferritic phase in the aged condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号