共查询到4条相似文献,搜索用时 0 毫秒
1.
Hannah Mein Yu Jing Faraz Ahmad Hu Zhang Ping Liu 《International journal of molecular sciences》2022,23(11)
Altered arginine metabolism (including the polyamine system) has recently been implicated in the pathogenesis of tauopathies, characterised by hyperphosphorylated and aggregated microtubule-associated protein tau (MAPT) accumulation in the brain. The present study, for the first time, systematically determined the time-course of arginine metabolism changes in the MAPT P301S (PS19) mouse brain at 2, 4, 6, 8 and 12 months of age. The polyamines putrescine, spermidine and spermine are critically involved in microtubule assembly and stabilization. This study, therefore, further investigated how polyamine biosynthetic and catabolic enzymes changed in PS19 mice. There were general age-dependent increases of L-arginine, L-ornithine, putrescine and spermidine in the PS19 brain (particularly in the hippocampus and parahippocampal region). While this profile change clearly indicates a shift of arginine metabolism to favor polyamine production (a polyamine stress response), spermine levels were decreased or unchanged due to the upregulation of polyamine retro-conversion pathways. Our results further implicate altered arginine metabolism (particularly the polyamine system) in the pathogenesis of tauopathies. Given the role of the polyamines in microtubule assembly and stabilization, future research is required to understand the functional significance of the polyamine stress response and explore the preventive and/or therapeutic opportunities for tauopathies by targeting the polyamine system. 相似文献
2.
Georgia-Ioanna Kartalou Ana Rita Salgueiro-Pereira Thomas Endres Angelina Lesnikova Plinio Casarotto Paula Pousinha Kevin Delanoe Elke Edelmann Eero Castrn Kurt Gottmann Hlne Marie Volkmar Lessmann 《International journal of molecular sciences》2020,21(23)
Therapeutic approaches providing effective medication for Alzheimer’s disease (AD) patients after disease onset are urgently needed. Previous studies in AD mouse models suggested that physical exercise or changed lifestyle can delay AD-related synaptic and memory dysfunctions when treatment started in juvenile animals long before onset of disease symptoms, while a pharmacological treatment that can reverse synaptic and memory deficits in AD mice was thus far not identified. Repurposing food and drug administration (FDA)-approved drugs for treatment of AD is a promising way to reduce the time to bring such medication into clinical practice. The sphingosine-1 phosphate analog fingolimod (FTY720) was approved recently for treatment of multiple sclerosis patients. Here, we addressed whether fingolimod rescues AD-related synaptic deficits and memory dysfunction in an amyloid precursor protein/presenilin-1 (APP/PS1) AD mouse model when medication starts after onset of symptoms (at five months). Male mice received intraperitoneal injections of fingolimod for one to two months starting at five to six months. This treatment rescued spine density as well as long-term potentiation in hippocampal cornu ammonis-1 (CA1) pyramidal neurons, that were both impaired in untreated APP/PS1 animals at six to seven months of age. Immunohistochemical analysis with markers of microgliosis (ionized calcium-binding adapter molecule 1; Iba1) and astrogliosis (glial fibrillary acid protein; GFAP) revealed that our fingolimod treatment regime strongly down regulated neuroinflammation in the hippocampus and neocortex of this AD model. These effects were accompanied by a moderate reduction of Aβ accumulation in hippocampus and neocortex. Our results suggest that fingolimod, when applied after onset of disease symptoms in an APP/PS1 mouse model, rescues synaptic pathology that is believed to underlie memory deficits in AD mice, and that this beneficial effect is mediated via anti-neuroinflammatory actions of the drug on microglia and astrocytes. 相似文献
3.
Amjad Ali Zainab Bukhari Muhammad Umar Muhammad Ali Ismail Zaheer Abbas 《International journal of molecular sciences》2021,22(12)
The use of experimental relations to approximate the efficient thermophysical properties of a nanofluid (NF) with Cu nanoparticles (NPs) and hybrid nanofluid (HNF) with Cu-SWCNT NPs and subsequently model the two-dimensional pulsatile Casson fluid flow under the impact of the magnetic field and thermal radiation is a novelty of the current study. Heat and mass transfer analysis of the pulsatile flow of non-Newtonian Casson HNF via a Darcy–Forchheimer porous channel with compliant walls is presented. Such a problem offers a prospective model to study the blood flow via stenosed arteries. A finite-difference flow solver is used to numerically solve the system obtained using the vorticity stream function formulation on the time-dependent governing equations. The behavior of Cu-based NF and Cu-SWCNT-based HNF on the wall shear stress (WSS), velocity, temperature, and concentration profiles are analyzed graphically. The influence of the Casson parameter, radiation parameter, Hartmann number, Darcy number, Soret number, Reynolds number, Strouhal number, and Peclet number on the flow profiles are analyzed. Furthermore, the influence of the flow parameters on the non-dimensional numbers such as the skin friction coefficient, Nusselt number, and Sherwood number is also discussed. These quantities escalate as the Reynolds number is enhanced and reduce by escalating the porosity parameter. The Peclet number shows a high impact on the microorganism’s density in a blood NF. The HNF has been shown to have superior thermal properties to the traditional one. These results could help in devising hydraulic treatments for blood flow in highly stenosed arteries, biomechanical system design, and industrial plants in which flow pulsation is essential. 相似文献
4.
Lou Legouez Brnice Le Dieu-Lugon Shrine Feillet Gaëtan Riou Melissa Yeddou Thibault Plouchart Nathalie Dourmap Marie-Anne Le Ray Stphane Marret Bruno J. Gonzalez Carine Cleren 《International journal of molecular sciences》2022,23(24)
Cerebral palsy (CP) is defined as permanent disorders of movement and posture. Prematurity and hypoxia–ischemia (HI) are risk factors of CP, and boys display a greater vulnerability to develop CP. Magnesium sulfate (MgSO4) is administered to mothers at risk of preterm delivery as a neuroprotective agent. However, its effectiveness is only partial at long term. To prolong MgSO4 effects, it was combined with 4-phenylbutyrate (4-PBA). A mouse model of neonatal HI, generating lesions similar to those reported in preterms, was realized. At short term, at the behavioral and cellular levels, and in both sexes, the MgSO4/4-PBA association did not alter the total prevention induced by MgSO4 alone. At long term, the association extended the MgSO4 preventive effects on HI-induced motor and cognitive deficits. This might be sustained by the promotion of oligodendrocyte precursor differentiation after HI at short term, which led to improvement of white matter integrity at long term. Interestingly, at long term, at a behavioral level, sex-dependent responses to HI were observed. This might partly be explained by early sex-dependent pathological processes that occur after HI. Indeed, at short term, apoptosis through mitochondrial pathways seemed to be activated in females but not in males, and only the MgSO4/4-PBA association seemed to counter this apoptotic process. 相似文献