共查询到20条相似文献,搜索用时 15 毫秒
2.
3.
Changqing Xuan Guangpu Lan Fengfei Si Zhilong Zeng Chunxia Wang Vivek Yadav Chunhua Wei Xian Zhang 《International journal of molecular sciences》2021,22(16)
The SWEET (Sugars Will Eventually be Exported Transporter) proteins are a novel family of sugar transporters that play key roles in sugar efflux, signal transduction, plant growth and development, plant–pathogen interactions, and stress tolerance. In this study, 22 ClaSWEET genes were identified in Citrullus lanatus (Thunb.) through homology searches and classified into four groups by phylogenetic analysis. The genes with similar structures, conserved domains, and motifs were clustered into the same groups. Further analysis of the gene promoter regions uncovered various growth, development, and biotic and abiotic stress responsive cis-regulatory elements. Tissue-specific analysis showed most of the genes were highly expressed in male flowers and the roots of cultivated varieties and wild cultivars. In addition, qRT-PCR results further imply that ClaSWEET proteins might be involved in resistance to Fusarium oxysporum infection. Moreover, a significantly higher expression level of these genes under various abiotic stresses suggests its multifaceted role in mediating plant responses to drought, salt, and low-temperature stress. The genome-wide characterization and phylogenetic analysis of ClaSWEET genes, together with the expression patterns in different tissues and stimuli, lays a solid foundation for future research into their molecular function in watermelon developmental processes and responses to biotic and abiotic stresses. 相似文献
4.
Donghao Wang Na Gong Chaorui Liu Suxia Li Zhaocheng Guo Gefan Wang Qiqi Shang Dongming Wang Xianling Ji Youchao Xin 《International journal of molecular sciences》2022,23(21)
Six α-amylase/subtilisin inhibitor genes (MnASIs) were identified from mulberry (Morus notabilis). In this study, bioinformatics and expression pattern analysis of six MnASIs were performed to determine their roles in resistance to B. cinerea. The expression of all six MnASIs was significantly increased under Botrytis cinerea infection. MnASI1, which responded strongly to B. cinerea, was overexpressed in Arabidopsis and mulberry. The resistance of Arabidopsis and mulberry overexpressing MnASI1 gene to B. cinerea was significantly improved, the catalase (CAT) activity was increased, and the malondialdehyde (MDA) content was decreased after inoculation with B. cinerea. At the same time, H2O2 and O2− levels were reduced in MnASI1 transgenic Arabidopsis, reducing the damage of ROS accumulation to plants. In addition, MnASI1 transgenic Arabidopsis increased the expression of the salicylic acid (SA) pathway-related gene AtPR1. This study provides an important reference for further revealing the function of α-amylase/subtilisin inhibitors. 相似文献
5.
6.
Florian Rocher Tarek Alouane Graldine Philippe Marie-Laure Martin Philippe Label Thierry Langin Ludovic Bonhomme 《International journal of molecular sciences》2022,23(3)
Fusarium graminearum, the main causal agent of Fusarium Head Blight (FHB), is one of the most damaging pathogens in wheat. Because of the complex organization of wheat resistance to FHB, this pathosystem represents a relevant model to elucidate the molecular mechanisms underlying plant susceptibility and to identify their main drivers, the pathogen’s effectors. Although the F. graminearum catalog of effectors has been well characterized at the genome scale, in planta studies are needed to confirm their effective accumulation in host tissues and to identify their role during the infection process. Taking advantage of the genetic variability from both species, a RNAseq-based profiling of gene expression was performed during an infection time course using an aggressive F. graminearum strain facing five wheat cultivars of contrasting susceptibility as well as using three strains of contrasting aggressiveness infecting a single susceptible host. Genes coding for secreted proteins and exhibiting significant expression changes along infection progress were selected to identify the effector gene candidates. During its interaction with the five wheat cultivars, 476 effector genes were expressed by the aggressive strain, among which 91% were found in all the infected hosts. Considering three different strains infecting a single susceptible host, 761 effector genes were identified, among which 90% were systematically expressed in the three strains. We revealed a robust F. graminearum core effectome of 357 genes expressed in all the hosts and by all the strains that exhibited conserved expression patterns over time. Several wheat compartments were predicted to be targeted by these putative effectors including apoplast, nucleus, chloroplast and mitochondria. Taken together, our results shed light on a highly conserved parasite strategy. They led to the identification of reliable key fungal genes putatively involved in wheat susceptibility to F. graminearum, and provided valuable information about their putative targets. 相似文献
7.
Plants must balance both beneficial (symbiotic) and pathogenic challenges from microorganisms, the former benefitting the plant and agriculture and the latter causing disease and economic harm. Plant innate immunity describes a highly conserved set of defense mechanisms that play pivotal roles in sensing immunogenic signals associated with both symbiotic and pathogenic microbes and subsequent downstream activation of signaling effector networks that protect the plant. An intriguing question is how the innate immune system distinguishes “friends” from “foes”. Here, we summarize recent advances in our understanding of the role and spectrum of innate immunity in recognizing and responding to different microbes. In addition, we also review some of the strategies used by microbes to manipulate plant signaling pathways and thus evade immunity, with emphasis on the use of effector proteins and micro-RNAs (miRNAs). Furthermore, we discuss potential questions that need addressing to advance the field of plant–microbe interactions. 相似文献
8.
Tomasz Kopczewski Elbieta Ku
niak Iwona Ciereszko Andrzej Korna 《International journal of molecular sciences》2022,23(20)
The reconfiguration of the primary metabolism is essential in plant–pathogen interactions. We compared the local metabolic responses of cucumber leaves inoculated with Pseudomonas syringae pv lachrymans (Psl) with those in non-inoculated systemic leaves, by examining the changes in the nicotinamide adenine dinucleotides pools, the concentration of soluble carbohydrates and activities/gene expression of carbohydrate metabolism-related enzymes, the expression of photosynthesis-related genes, and the tricarboxylic acid cycle-linked metabolite contents and enzyme activities. In the infected leaves, Psl induced a metabolic signature with an altered [NAD(P)H]/[NAD(P)+] ratio; decreased glucose and sucrose contents, along with a changed invertase gene expression; and increased glucose turnover and accumulation of raffinose, trehalose, and myo-inositol. The accumulation of oxaloacetic and malic acids, enhanced activities, and gene expression of fumarase and l-malate dehydrogenase, as well as the increased respiration rate in the infected leaves, indicated that Psl induced the tricarboxylic acid cycle. The changes in gene expression of ribulose-l,5-bis-phosphate carboxylase/oxygenase large unit, phosphoenolpyruvate carboxylase and chloroplast glyceraldehyde-3-phosphate dehydrogenase were compatible with a net photosynthesis decline described earlier. Psl triggered metabolic changes common to the infected and non-infected leaves, the dynamics of which differed quantitatively (e.g., malic acid content and metabolism, glucose-6-phosphate accumulation, and glucose-6-phosphate dehydrogenase activity) and those specifically related to the local or systemic response (e.g., changes in the sugar content and turnover). Therefore, metabolic changes in the systemic leaves may be part of the global effects of local infection on the whole-plant metabolism and also represent a specific acclimation response contributing to balancing growth and defense. 相似文献
9.
Cristiana Correia Federico Magnani Chiara Pastore Antonio Cellini Irene Donati Giuseppina Pennisi Ivan Paucek Francesco Orsini Elodie Vandelle Conceio Santos Francesco Spinelli 《International journal of molecular sciences》2022,23(21)
Light composition modulates plant growth and defenses, thus influencing plant–pathogen interactions. We investigated the effects of different light-emitting diode (LED) red (R) (665 nm) and blue (B) (470 nm) light combinations on Actinidia chinensis performance by evaluating biometric parameters, chlorophyll a fluorescence, gas exchange and photosynthesis-related gene expression. Moreover, the influence of light on the infection by Pseudomonas syringae pv. actinidiae (Psa), the etiological agent of bacterial canker of kiwifruit, was investigated. Our study shows that 50%R–50%B (50R) and 25%R–75%B (25R) lead to the highest PSII efficiency and photosynthetic rate, but are the least effective in controlling the endophytic colonization of the host by Psa. Monochromatic red light severely reduced ΦPSII, ETR, Pn, TSS and photosynthesis-related genes expression, and both monochromatic lights lead to a reduction of DW and pigments content. Monochromatic blue light was the only treatment significantly reducing disease symptoms but did not reduce bacterial endophytic population. Our results suggest that monochromatic blue light reduces infection primarily by modulating Psa virulence more than host plant defenses. 相似文献
10.
Yuan Tian Yang Liu Liang Yue Constantine Uwaremwe Xia Zhao Qin Zhou Yun Wang Ruoyu Wang 《International journal of molecular sciences》2022,23(3)
Rheum palmatum L. is an important traditional Chinese medicinal herb now in demand worldwide. Recently, the theoretical framework suggested that sucrose triggers colonization of PGPM (plant growth-promoting microbes) in the rhizosphere, but their interactions on the plant remain largely unknown. Here, we applied three concentrations of both Bacillus amyloliquefaciens EZ99 inoculant (1.0 × 105, 1.0 × 106, and 1.0 × 107 colony-forming units (CFU)/mL, denoted as LB, MB, and HB, respectively) and sucrose (0.15, 1.5, and 15 g/L, denoted as LS, MS, and HS, respectively) to investigate their co-effects on R. palmatum in a field experiment. The results showed that LB + MS (1.0 × 105 CFU/mL Bacillus + 1.5 g/L sucrose) and LB + LS (1.0 × 105 CFU/mL Bacillus + 0.15 g/L sucrose) treatments significantly increased root fresh weight (p ≤ 0.05). Metabolite analysis revealed that the treatment LB + LS significantly increased the relative content of major active components in rhubarb, namely anthraquinones and phenolic compounds, by 1.5% and 2.3%. Although high sucrose addition increased the activities of certain soil enzymes, the LB + LS treatment significantly increased total potassium (TK), whereas it decreased available potassium (AK), which facilitated the potassium utilization in rhizosphere soil. Furthermore, rhizosphere microbiomes revealed that fungal diversity was augmented in LB + LS treatment, in which the common causative fungal pathogen Fusarium spp. showed an effective suppression. Additionally, the redundancy analysis and Spearman correlations revealed a positive relationship of Sphingomonas associated with change in potassium bioavailability. Altogether, our findings suggest that the combined application of a bacterial inoculant and sucrose can improve the growth and quality of R. palmatum, and stimulate uptake of plant nutrients that contribute to alter the microbial community for biocontrol potential. Hence, this work not only has broad application prospects across economical plants, but also emphasizes agroecological practices for sustainable agriculture. 相似文献
11.
12.
Chuan-Jie Zhang Shi-Xing Wang Yan-Na Liang Sheng-Hui Wen Bao-Zhu Dong Zheng Ding Li-Yun Guo Xiao-Qiong Zhu 《International journal of molecular sciences》2021,22(2)
Fungal effectors play important roles in host–pathogen interactions. Botryosphaeria dothidea is an ascomycetous fungus that is responsible for the diseases of hundreds of woody plant species, including apple ring rot, which seriously affects apples worldwide. However, little is known about the effectors of B. dothidea. In this study, we analyzed the B. dothidea genome and predicted 320 candidate effector genes, 124 of which were successfully amplified and cloned. We investigated the effects of these genes on plant cell death in Nicotiana benthamiana while using a transient expression system. Twenty-four hours after initial inoculation with Agrobacterium tumefaciens cells carrying candidate effectors, the infiltrated leaves were challenged with A. tumefaciens cells carrying the BAX gene. In total, 116 candidate effectors completely inhibited, while one partially inhibited, the programmed cell death (PCD) of N. benthamiana induced by BAX, whereas seven candidate effectors had no effect. We then further tested seven candidate effectors able to suppress BAX-triggered PCD (BT-PCD) and found that they all completely inhibited PCD triggered by the elicitors INF1, MKK1, and NPK1. This result suggests that these effectors were activated in order to suppress pathogen-associated molecular pattern-triggered immunity. The signal peptides of these candidate effectors exhibited secretory activity in yeast (pSUC2 vector). Moreover, the respective deletion of Bdo_11198 and Bdo_12090 significantly reduced the virulence of B. dothidea. These results suggest that these effectors play important roles in the interaction of B. dothidea with its hosts. 相似文献
13.
14.
Stfanie Graindorge Claire Villette Sandrine Koechler Chlo Groh Sophie Comtet-Marre Pierre Mercier Romaric Magerand Pierre Peyret Dimitri Heintz Hubert Schaller Florence Arsne-Ploetze 《International journal of molecular sciences》2022,23(21)
How specific interactions between plant and pathogenic, commensal, or mutualistic microorganisms are mediated and how bacteria are selected by a plant are important questions to address. Here, an Arabidopsis thaliana mutant called chs5 partially deficient in the biogenesis of isoprenoid precursors was shown to extend its metabolic remodeling to phenylpropanoids and lipids in addition to carotenoids, chlorophylls, and terpenoids. Such a metabolic profile was concomitant to increased colonization of the phyllosphere by the pathogenic strain Pseudomonas syringae pv. tomato DC3000. A thorough microbiome analysis by 16S sequencing revealed that Streptomyces had a reduced colonization potential in chs5. This study revealed that the bacteria–Arabidopsis interaction implies molecular processes impaired in the chs5 mutant. Interestingly, our results revealed that the metabolic status of A. thaliana was crucial for the specific recruitment of Streptomyces into the microbiota. More generally, this study highlights specific as well as complex molecular interactions that shape the plant microbiota. 相似文献
15.
Katarzyna Otulak-Kozie Edmund Kozie Jzef Julian Bujarski Justyna Frankowska-ukawska Miguel Angel Torres 《International journal of molecular sciences》2020,21(22)
Turnip mosaic virus (TuMV) is one of the most important plant viruses worldwide. It has a very wide host range infecting at least 318 species in over 43 families, such as Brassicaceae, Fabaceae, Asteraceae, or Chenopodiaceae from dicotyledons. Plant NADPH oxidases, the respiratory burst oxidase homologues (RBOHs), are a major source of reactive oxygen species (ROS) during plant–microbe interactions. The functions of RBOHs in different plant–pathogen interactions have been analyzed using knockout mutants, but little focus has been given to plant–virus responses. Therefore, in this work we tested the response after mechanical inoculation with TuMV in Arabidopsis rbohD and rbohF transposon knockout mutants and analyzed ultrastructural changes after TuMV inoculation. The development of the TuMV infection cycle was promoted in rbohD plants, suggesting that RbohD plays a role in the Arabidopsis resistance response to TuMV. rbohF and rbohD/F mutants display less TuMV accumulation and a lack of virus cytoplasmic inclusions were observed; these observations suggest that RbohF promotes viral replication and increases susceptibility to TuMV. rbohD/F displayed a reduction in H2O2 but enhanced resistance similarly to rbohF. This dominant effect of the rbohF mutation could indicate that RbohF acts as a susceptibility factor. Induction of hydrogen peroxide by TuMV was partially compromised in rbohD mutants whereas it was almost completely abolished in rbohD/F, indicating that these oxidases are responsible for most of the ROS produced in this interaction. The pattern of in situ H2O2 deposition after infection of the more resistant rbohF and rbohD/F genotypes suggests a putative role of these species on systemic signal transport. The ultrastructural localization and quantification of pathogenesis-related protein 1 (PR1) indicate that ROS produced by these oxidases also influence PR1 distribution in the TuMV-A. thaliana pathosystem. Our results revealed the highest activation of PR1 in rbohD and Col-0. Thus, our findings indicate a correlation between PR1 accumulation and susceptibility to TuMV. The specific localization of PR1 in the most resistant genotypes after TuMV inoculation may indicate a connection of PR1 induction with susceptibility, which may be characteristic for this pathosystem. Our results clearly indicate the importance of NADPH oxidases RbohD and RbohF in the regulation of the TuMV infection cycle in Arabidopsis. These findings may help provide a better understanding of the mechanisms modulating A. thaliana–TuMV interactions. 相似文献
16.
17.
Izabela Perkowska Marta Potrykus Joanna Siwinska Dominika Siudem Ewa Lojkowska Anna Ihnatowicz 《International journal of molecular sciences》2021,22(12)
Coumarins belong to a group of secondary metabolites well known for their high biological activities including antibacterial and antifungal properties. Recently, an important role of coumarins in plant resistance to pathogens and their release into the rhizosphere upon pathogen infection was discovered. It is also well documented that coumarins play a crucial role in the Arabidopsis thaliana growth under Fe-limited conditions. However, the mechanisms underlying interplay between plant resistance, accumulation of coumarins and Fe status, remain largely unknown. In this work, we investigated the effect of both mentioned factors on the disease severity using the model system of Arabidopsis/Dickeya spp. molecular interactions. We evaluated the disease symptoms in Arabidopsis plants, wild-type Col-0 and its mutants defective in coumarin accumulation, grown in hydroponic cultures with contrasting Fe regimes and in soil mixes. Under all tested conditions, Arabidopsis plants inoculated with Dickeya solani IFB0099 strain developed more severe disease symptoms compared to lines inoculated with Dickeya dadantii 3937. We also showed that the expression of genes encoding plant stress markers were strongly affected by D. solani IFB0099 infection. Interestingly, the response of plants to D. dadantii 3937 infection was genotype-dependent in Fe-deficient hydroponic solution. 相似文献
18.
19.
Jian Luo Jinzhi Xu Chaolu Xie Zuoming Zhao Junrui Guo Yuan Wen Tian Li Zeyang Zhou 《International journal of molecular sciences》2022,23(14)
Microsporidia are obligate intracellular parasites that infect a wide variety of hosts ranging from invertebrates to vertebrates. These parasites have evolved strategies to directly hijack host mitochondria for manipulating host metabolism and immunity. However, the mechanism of microsporidia interacting with host mitochondria is unclear. In the present study, we show that microsporidian Encephalitozoon greatly induce host mitochondrial fragmentation (HMF) in multiple cells. We then reveal that the parasites promote the phosphorylation of dynamin 1-like protein (DRP1) at the 616th serine (Ser616), and dephosphorylation of the 637th serine (Ser637) by highly activating mitochondrial phosphoglycerate mutase 5 (PGAM5). These phosphorylation modifications result in the translocation of DRP1 from cytosol to the mitochondrial outer membrane, and finally lead to HMF. Furthermore, treatment with mitochondrial division inhibitor 1 (Mdivi1) significantly reduced microsporidian proliferation, indicating that the HMF are crucial for microsporidian replication. In summary, our findings reveal the mechanism that microsporidia manipulate HMF and provide references for further understanding the interactions between these ubiquitous pathogens with host mitochondria. 相似文献
20.
Katarzyna Otulak-Kozie Edmund Kozie Wodzimierz Przewodowski Katarzyna Ciacka Agnieszka Przewodowska 《International journal of molecular sciences》2022,23(7)
Glutathione is a metabolite that plays an important role in plant response to biotic stress through its ability to remove reactive oxygen species, thereby limiting the degree of potential oxidative damage. It can couple changes in the intracellular redox state to the development, especially the defense responses, of plants. Several studies have focused on measuring glutathione levels in virus infected plants, but have not provided complete information. Therefore, we analyzed, for the first time, the content of glutathione as well as its ultrastructural distribution related to susceptible and hypersensitive potato–Potato virus Y NTN (PVYNTN) interaction, with an aim of providing new insight into interactive responses to PVYNTN stress. Our findings reported that the inoculation of PVYNTN caused a dynamic increase in the content of glutathione, not only in resistance but also in susceptible reaction, especially at the first steps of plant–virus interaction. Moreover, the increase in hypersensitive response was much more dynamic, and accompanied by a significant reduction in the content of PVYNTN. By contrast, in susceptible potato Irys, the content of glutathione decreased between 7 and 21 days after virus inoculation, which led to a significant increase in PVYNTN concentration. Additionally, our findings clearly indicated the steady induction of two selected potato glutathione S-transferase StGSTF1 and StGSTF2 genes after PVYNTN inoculation, regardless of the interaction type. However, the relative expression level of StGSTF1 did not significantly differ between resistant and susceptible plants, whereas the relative expression levels of StGSTF2 differed between susceptible and resistant reactions. Therefore, we proposed that StGSTF2 can act as a marker of the type of response to PVYNTN. Our observations indicated that glutathione is an important component of signaling as well as the regulatory network in the PVYNTN–potato pathosystem. In resistance responses to PVYNTN, this metabolite activates plant defenses by reducing potential damage to the host plant cell, causing a reduction in virus concentration, while it can also be involved in the development of PVYNTN elicited symptoms, as well as limiting oxidative stress, leading to systemic infection in susceptible potato plants. 相似文献