首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) has been identified as a group of enzymes that catalyze cytosine deamination in single-stranded (ss) DNA to form uracil, causing somatic mutations in some cancers. We analyzed the APOBEC3 family in 33 TCGA cancer types and the results indicated that APOBEC3s are upregulated in multiple cancers and strongly correlate with prognosis, particularly in low grade glioma (LGG). Then we constructed a prognostic model based on family expression in LGG where the APOBEC3 family signature is an accurate predictive model (AUC of 0.85). Gene mutation, copy number variation (CNV), and a differential gene expression (DEG) analysis were performed in different risk groups, and the weighted gene co-expression network analysis (WGCNA) was employed to clarify the role of various members in LGG; CIBERSORT algorithm was deployed to evaluate the landscape of LGG immune infiltration. We found that upregulation of the APOBEC3 family expression can strengthen Ras/MAPK signaling pathway, promote tumor progression, and ultimately reduce the treatment benefits of Raf inhibitors. Moreover, the APOBEC3 family was shown to enhance the immune response mediated by myeloid cells and interferon gamma, as well as PD-L1 and PD-L2 expression, implying that they have immunotherapy potential. Therefore, the APOBEC3 signature enables an efficient assessment of LGG patient survival outcomes and expansion of clinical benefits by selecting appropriate individualized treatment strategies.  相似文献   

3.
The family with sequence similarity 72 Member A (FAM72A) is overexpressed in several types of cancer. However, its contributions to tumorigenesis remain largely unknown. Based on The Cancer Genome Atlas (TCGA) database, FAM72A was upregulated across 33 types of cancer. Accordingly, high levels of FAM72A predicted inferior outcomes in half of the cancer types using survival analysis (the Kaplan-Meier curve and univariate Cox regression model). Receiver operating characteristic (ROC) analysis demonstrated that FAM72A showed high accuracy in distinguishing cancerous tissues from normal ones. FAM72A was correlated with immune and stromal scores and immune cell infiltrations in various tumors. Moreover, FAM72A was also associated with tumor mutation burden (TMB), microsatellite instability (MSI), and immune checkpoint genes. Immunophenoscore (IPS) further validated that the FAM72Alow tumor showed high immunogenicity and tended to respond to anti-PD1/PDL1/PDL2, anti-CTLA4 treatment, and combined immunotherapies. We also investigated the functional role of FAM72A in lung adenocarcinoma (LUAD). In vitro studies demonstrated that the ectopic expression of FAM72A accelerated the proliferation and migration of NSCLC cells, whereas silencing FAM72A showed the opposite effects on them. In short, FAM72A had prognostic potential and correlated with tumor immunogenicity in various tumors. Functional analysis indicated that FAM72A is an oncogene in LUAD.  相似文献   

4.
The chromodomain helicase DNA binding domain 5 (CHD5) is required for neural development and plays an important role in the regulation of gene expression. Although CHD5 exerts a broad tumor suppressor effect in many tumor types, its specific functions regarding its expression levels, and impact on immune cell infiltration, proliferation and migration in glioma remain unclear. Here, we evaluated the role of CHD5 in tumor immunity in a pan-cancer multi-database using the R language. The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and Cancer Cell Lines Encyclopedia (CCLE) datasets were utilized to determine the role of CHD5 in 33 types of cancers, including the expression level, prognosis, tumor progression, and immune microenvironment. Furthermore, we explored the effect of CHD5 on glioma proliferation and migration using the cell counting kit 8 (CCK-8) assay, transwell assays and western blot analysis. The findings from our pan-cancer analysis showed that CHD5 was differentially expressed in the tumor tissues as compared to the normal tissues. Survival analysis showed that CHD5 was generally associated with the prognosis of glioblastoma (GBM), low Grade Glioma (LGG) and neuroblastoma, where the low expression of CHD5 was associated with a worse prognosis in glioma patients. Then, we confirmed that the expression level of CHD5 was associated with tumor immune infiltration and tumor microenvironment, especially in glioma. Moreover, si-RNA mediated knockdown of CHD5 promoted the proliferation and migration of glioma cells in vitro. In conclusion, CHD5 was found to be differentially expressed in the pan-cancer analysis and might play an important role in antitumor immunity. CHD5 is expected to be a potential tumor prognostic marker, especially in glioma.  相似文献   

5.
6.
IL-6 pathway is abnormally hyperactivated in several cancers triggering tumor cell growth and immune system inhibition. Along with genomic mutation, the IL6 pathway gene expression can be affected by DNA methylation, microRNAs, and post-translational modifications. Computational analysis was performed on the Cancer Genome Atlas (TCGA) datasets to explore the role of IL6, IL6R, IL6ST, and IL6R transmembrane isoform expression and their epigenetic regulation in different cancer types. IL6 was significantly modulated in 70% of tumor types, revealing either up- or down-regulation in an approximately equal number of tumors. Furthermore, IL6R and IL6ST were downregulated in more than 10 tumors. Interestingly, the correlation analysis demonstrated that only the IL6R expression was negatively affected by the DNA methylation within the promoter region in most tumors. Meanwhile, only the IL6ST expression was extensively modulated by miRNAs including miR-182-5p, which also directly targeted all three genes. In addition, IL6 upregulated miR-181a-3p, mirR-214-3p, miR-18a-5p, and miR-938, which in turn inhibited the expression of IL6 receptors. Finally, the patients’ survival rate was significantly affected by analyzed targets in some tumors. Our results suggest the relevance of epigenetic regulation of IL6 signaling and pave the way for further studies to validate these findings and to assess the prognostic and therapeutic predictive value of these epigenetic markers on the clinical outcome and survival of cancer patients.  相似文献   

7.
8.
Regulator of Chromatin Condensation 1 (RCC1) is the only known guanine nucleotide exchange factor that acts on the Ras-like G protein Ran and plays a key role in cell cycle regulation. Although there is growing evidence to support the relationship between RCC1 and cancer, detailed pancancer analyses have not yet been performed. In this genome database study, based on The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases, the potential role of RCC1 in 33 tumors’ entities was explored. The results show that RCC1 is highly expressed in most human malignant neoplasms in contrast to healthy tissues. RCC1 expression is closely related to the prognosis of a broad variety of tumor patients. Enrichment analysis showed that some tumor-related pathways such as “cell cycle” and “RNA transport” were involved in the functional mechanism of RCC1. In particular, the conducted analysis reveals the relation of RCC1 to multiple immune checkpoint genes and suggests that the regulation of RCC1 is closely related to tumor infiltration of cancer-associated fibroblasts and CD8+ T cells. Coherent data demonstrate the association of RCC1 with the tumor mutation burden and microsatellite instability in various tumors. These findings provide new insights into the role of RCC1 in oncogenesis and tumor immunology in various tumors and indicate its potential as marker for therapy prognosis and targeted treatment strategies.  相似文献   

9.
Smoking and HPV infection are known causes for the vast majority of head and neck squamous cell carcinomas (HNSCC) due to their likelihood of causing gene dysregulation and genomic alterations. Enhancer RNAs (eRNAs) are non-coding RNAs that are known to increase nearby and target gene expression, and activity that has been suggested to be affected by genetic and epigenetic alterations. Here we sought to identify the effects of smoking and HPV status on eRNA expression in HNSCC tumors. We focused on four patient cohorts including smoking/HPV+, smoking/HPV−, non-smoking/HPV+, and non-smoking/HPV− patients. We used TCGA RNA-seq data from cancer tumors and adjacent normal tissue, extracted eRNA read counts, and correlated these to survival, clinical variables, immune infiltration, cancer pathways, and genomic alterations. We found a large number of differentially expressed eRNA in each patient cohort. We also found several dysregulated eRNA correlated to patient survival, clinical variables, immune pathways, and genomic alterations. Additionally, we were able to find dysregulated eRNA nearby seven key HNSCC-related oncogenes. For example, we found eRNA chr14:103272042–103272430 (eRNA-24036), which is located close to the TRAF3 gene to be differentially expressed and correlated with the pathologic N stage and immune cell populations. Using a separate validation dataset, we performed differential expression and immune infiltration analysis to validate our results from the TCGA data. Our findings may explain the association between eRNA expression, enhancer activity, and nearby gene dysregulation.  相似文献   

10.
Liver hepatocellular carcinoma (LIHC) remains a global health challenge with poor prognosis and high mortality. FKBP1A was first discovered as a receptor for the immunosuppressant drug FK506 in immune cells and is critical for various tumors and cancers. However, the relationships between FKBP1A expression, cellular distribution, tumor immunity, and prognosis in LIHC remain unclear. Here, we investigated the expression level of FKBP1A and its prognostic value in LIHC via multiple datasets including ONCOMINE, TIMER, GEPIA, UALCAN, HCCDB, Kaplan–Meier plotter, LinkedOmics, and STRING. Human liver tissue microarray was employed to analyze the characteristics of FKBP1A protein including the expression level and pathological alteration in cellular distribution. FKBP1A expression was significantly higher in LIHC and correlated with tumor stage, grade and metastasis. The expression level of the FKBP1A protein was also increased in LIHC patients along with its accumulation in endoplasmic reticulum (ER). High FKBP1A expression was correlated with a poor survival rate in LIHC patients. The analysis of gene co-expression and the regulatory pathway network suggested that FKBP1A is mainly involved in protein synthesis, metabolism and the immune-related pathway. FKBP1A expression had a significantly positive association with the infiltration of hematopoietic immune cells including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Moreover, M2 macrophage infiltration was especially associated with a poor survival prognosis in LIHC. Furthermore, FKBP1A expression was significantly positively correlated with the expression of markers of M2 macrophages and immune checkpoint proteins such as PD-L1, CTLA-4, LAG3 and HAVCR2. Our study demonstrated that FKBP1A could be a potential prognostic target involved in tumor immune cell infiltration in LIHC.  相似文献   

11.
12.
Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule that can regulate immune responses in the tumor microenvironment (TME); however, the clinical applications of PD-L1 in early-stage colorectal cancer (CRC) remain unclear. In this study, we aimed to investigate the relationship between PD-L1 expression and survival outcome and explore its relevant immune responses in CRC. PD-L1 expression was evaluated by immunohistochemical staining to determine the tumor proportion score and combined positive score (CPS) in a Taiwanese CRC cohort. The oncomine immune response research assay was conducted for immune gene expression analyses. CRC datasets from the TCGA database were reappraised for PD-L1-associated gene enrichment analyses using GSEA. The high expression of PD-L1 (CPS ≥ 5) was associated with longer recurrence-free survival (p = 0.031) and was an independent prognostic factor as revealed by multivariate analysis. High PD-L1 expression was related to six immune-related gene signatures, and CXCL9 is the most significant overexpressed gene in differential analyses. High CXCL9 expression correlated with increased infiltration levels of immune cells in the TME, including CD8+ T lymphocytes and M1 macrophages. These findings suggest that high PD-L1 expression is a prognostic factor of early-stage CRC, and CXCL9 may play a key role in regulating PD-L1 expression.  相似文献   

13.
Immunotherapy, such as immune checkpoint inhibitors (ICIs), is a validated strategy for treating lung adenocarcinoma (LUAD) patients. One of the main challenges in ICIs treatment is the lack of efficient biomarkers for predicting response or resistance. Metabolic reprogramming has been proven to remodel the tumor microenvironment, altering the response to ICIs. We constructed a prognostic model as metabolism-related gene (MRG) of four genes by using weighted gene co-expression network analysis (WGCNA), the nonnegative matrix factorization (NMF), and Cox regression analysis of a LUAD dataset (n = 500) from The Cancer Genome Atlas (TCGA), which was validated with three Gene Expression Omnibus (GEO) datasets (n = 442, n = 226 and n = 127). The MRG was constructed based on BIRC5, PLK1, CDKN3, and CYP4B1 genes. MRG-high patients had a worse survival probability than MRG-low patients. Furthermore, the MRG-high subgroup was more associated with cell cycle-related pathways; high infiltration of activated memory CD4+T cells, M0 macrophages, and neutrophils; and showed better response to ICIs. Contrarily, the MRG-low subgroup was associated with fatty acid metabolism, high infiltration of dendric cells, and resting mast cells, and showed poor response to ICIs. MRG is a promising prognostic index for predicting survival and response to ICIs and other therapeutic agents in LUAD, which might provide insights on strategies with ICIs alone or combined with other agents.  相似文献   

14.
Pancreatic cancer (PC) is one of the most fatal malignancies. Pyroptosis, a type of inflammatory cell death, likely plays a critical role in the development and progression of tumors. However, the relationship between pyroptosis-related genes (PRGs) and prognosis and immunity to PC is not entirely clear. This study, aimed at identifying the key PRGs in PC, highlights their prognostic value, immune characteristics, and candidate drugs for therapies. We screened 47 differentially expressed PRGs between PC and normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets. Afterwards, a pyroptosis-related gene prognostic index (PRGPI) was constructed based on eight PRGs (AIM2, GBP1, HMGB1, IL18, IRF6, NEK7, NLRP1 and PLCG1) selected by univariate and multivariate Cox regression analysis and LASSO regression analysis, and verified in two external datasets from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) databases. We found that the PC patients in the PRGPI-defined subgroups not only reflected significantly different levels of infiltration in a variety of immune cells, such as M1 macrophages, but also showed differential expression in genes of the human leukocyte antigen (HLA) family and immune checkpoints. Additionally, molecular characteristics and drug sensitivity also stayed close to the PRGPI risk scores. Therefore, PRGPI may serve as a valuable prognostic biomarker and may potentially provide guidance toward novel therapeutic options for PC patients.  相似文献   

15.
While we previously revealed RSK4 as a therapeutic target in lung and bladder cancers, the wider role of this kinase in other cancers remains controversial. Indeed, other reports instead proposed RSK4 as a tumour suppressor in colorectal and gastric cancers and are contradictory in breast malignancies. One explanation for these discrepancies may be the expression of different RSK4 isoforms across cancers. Four RNAs are produced from the RSK4 gene, with two being protein-coding. Here, we analysed the expression of the latter across 30 normal and 33 cancer tissue types from the combined GTEx/TCGA dataset and correlated it with clinical features. This revealed the expression of RSK4 isoforms 1 and 2 to be independent prognostic factors for patient survival, pathological stage, cancer metastasis, recurrence, and immune infiltration in brain, stomach, cervical, and kidney cancers. However, we found that upregulation of either isoform can equally be associated with good or bad prognosis depending on the cancer type, and changes in the expression ratio of isoforms fail to predict clinical outcome. Hence, differential isoform expression alone cannot explain the contradictory roles of RSK4 in cancers, and further research is needed to highlight the underlying mechanisms for the context-dependent function of this kinase.  相似文献   

16.
Despite growing evidence suggesting the critical function of NOL7 in cancer initiation and development, a systematic pancancer analysis of NOL7 is lacking. Herein, we present a comprehensive study of NOL7 which aimed to explore its potential role and detailed mechanisms across 33 human tumors based on The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CATPAC) databases. As a result, both gene and protein levels of NOL7 were found to be increased in various tumor tissues, including breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), and head and neck squamous cell carcinoma (HNSC) as compared with corresponding normal tissues. Meanwhile, dysregulated NOL7 expression was found to be closely related to pathological stage and prognosis in several cancers, including LIHC, ovarian serous cystadenocarcinoma (OV), and bladder urothelial carcinoma (BLCA). The DNA methylation level of NOL7 was found to be decreased in most cancers and to be negatively associated with NOL7 expression. Furthermore, NOL7 expression was determined to be significantly associated with levels of infiltrating cells and immune checkpoint genes, including HMGB1. Analysis of NOL7-related genes revealed that RNA metabolism pathways, including “ribosome biogenesis”, “spliceosome”, and “RNA transport”, were mainly involved in the functional mechanism of NOL7 in human cancers. In summary, this pancancer study characterized the relationship between NOL7 expression and clinicopathologic features in multiple cancer types and further showed its potential regulatory network in human cancers. It represents a systemic analysis for further functional and therapeutic studies of NOL7 and highlights its predictive value with respect to the carcinogenesis and prognosis of various cancers, especially LIHC.  相似文献   

17.
The overactivation of Wnt/β-catenin signaling is a hallmark of colorectal cancer (CRC) development. We identified the cell adhesion molecule L1CAM (L1) as a target of β-catenin-TCF transactivation in CRC cells. The overexpression of L1 in CRC cells confers enhanced proliferation, motility, tumorigenesis and liver metastasis, and L1 is exclusively localized in the invasive areas of human CRC tissue. A number of genes are induced after L1 transfection into CRC cells by a mechanism involving the cytoskeletal protein ezrin and the NF-κB pathway. When studying the changes in gene expression in CRC cells overexpressing L1 in which ezrin levels were suppressed by shRNA to ezrin, we discovered the collagen-modifying enzyme lysyl hydroxylase 2 (PLOD2) among these genes. We found that increased PLOD2 expression was required for the cellular processes conferred by L1, including enhanced proliferation, motility, tumorigenesis and liver metastasis, since the suppression of endogenous PLOD2 expression, or its enzymatic activity, blocked the enhanced tumorigenic properties conferred by L1. The mechanism involved in increased PLOD2 expression by L1 involves ezrin signaling and PLOD2 that affect the SMAD2/3 pathway. We found that PLOD2 is localized in the colonic crypts in the stem cell compartment of the normal mucosa and is found at increased levels in invasive areas of the tumor and, in some cases, throughout the tumor tissue. The therapeutic strategies to target PLOD2 expression might provide a useful approach for CRC treatment.  相似文献   

18.
19.
Phagocytosis is crucial in tumor surveillance and immune function. The association between phagocytosis and the outcomes of breast cancer patients has not been well-determined. In this study, data were downloaded from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases to investigate the role of phagocytosis in breast cancer. Data from the TCGA and GEO databases were used to investigate the prognostic role of phagocytosis in breast cancer. Then, we performed pathway enrichment analysis, copy number variation (CNV) and single-nucleotide variant (SNV) analyses, immune infiltration analysis, calculation of tumor purity, stromal score, and immune score, and consistent clustering. We also constructed a phagocytosis-regulators-based signature system to examine its association in survival and drug response. The genomic and expression differences in the phagocytosis regulators in breast cancer were systematically analyzed, explaining the widespread dysregulation of phagocytosis regulators. Using the investigated association of phagocytosis regulators with the prognosis and tumor immune environment, we constructed a prognostic model based on phagocytosis regulators. We discovered that patients with high risk scores had a poor prognosis and were negatively associated with immune functions. The model had preferential predictive performance and significantly consistent drug-resistance prediction results. Our findings suggest that the phagocytosis-factors-based scoring system can be used as a novel prognostic factor, serving as a powerful reference tool for predicting prognosis and developing methods against drug resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号